Recent advances in technologies toward the development of 2D materials-based electronic noses
Research output: Contribution to journal › Review article › Contributed › peer-review
Contributors
Abstract
Inspired by biological noses, their electronic counterparts i.e. e-noses are designed to imitate them by detecting and identifying surrounding gases and volatile compounds through the use of gas sensor arrays. These arrays are typically composed of metal oxide sensors, which are limited by energy efficiency and sensitivity issues. However, the use of two-dimensional materials as active elements has shown promising results addressing these hurdles due to their remarkable sensitivity at room temperature. Since the revolutionary discovery of graphene and the synthesis or exfoliation of a myriad of nanosheets, these have been integrated into high performance gas sensors for e-noses. In this review, we highlight the significant advancements and technologies in developing these devices, including the transduction mechanisms used to translate gas adsorption events into measurable signals and the methods for depositing 2D materials as part of the transducers. To overcome the issue of selectivity that often imposes a limitation to nanomaterial-based gas sensors, we discuss the potential of implementing artificial intelligence tools as the brain behind the sensor for smart data analysis.
Details
Original language | English |
---|---|
Article number | 117185 |
Journal | TrAC - Trends in Analytical Chemistry |
Volume | 166 |
Publication status | Published - Sept 2023 |
Peer-reviewed | Yes |
External IDs
Scopus | 85164218867 |
---|---|
Mendeley | b7f2cbde-08de-3c51-9f6c-4df2c1b1ae9c |
ORCID | /0000-0002-4349-793X/work/142245521 |
ORCID | /0000-0002-9899-1409/work/142249232 |
Keywords
Research priority areas of TU Dresden
DFG Classification of Subject Areas according to Review Boards
- Theoretical Chemistry: Molecules, Materials, Surfaces
- Theoretical Chemistry: Electron Structure, Dynamics, Simulation
- Theoretical Condensed Matter Physics
- Statistical Physics, Soft Matter, Biological Physics, Nonlinear Dynamics
- Thermodynamics and Kinetics as well as Properties of Phases and Microstructure of Materials
- Biomaterials
- Computer-aided Material Design and Simulation of Material Behaviour from Atomistic to Microscopic Scale
- Synthesis and Properties of Functional Materials
- Experimental Condensed Matter Physics
- Physical Chemistry of Molecules, Liquids and Interfaces, Biophysical Chemistry
Subject groups, research areas, subject areas according to Destatis
- Optoelectronics
- Micro- and Nanoelectronics
- Theoretical Physics
- Sensors and Measurement Technology
- Software Technology
- Solid State Physics
- Materials Science
- Virology
- Materials Physics
- Forensic Medicine
- Library Science (general)
- Biomedical Engineering
- Building Materials Technology
- Environmental Engineering (incl. Recycling)
Sustainable Development Goals
- SDG 17 - Partnerships for the Goals
- SDG 7 - Affordable and Clean Energy
- SDG 6 - Clean Water and Sanitation
- SDG 9 - Industry, Innovation, and Infrastructure
- SDG 15 - Life on Land
- SDG 5 - Gender Equality
- SDG 1 - No Poverty
- SDG 11 - Sustainable Cities and Communities
- SDG 13 - Climate Action
- SDG 3 - Good Health and Well-being
- SDG 12 - Responsible Consumption and Production
Keywords
- 2D materials, Artificial intelligence, Electronic nose, Gas sensor, Machine learning