Real-time complex light field generation through a multi-core fiber with deep learning

Research output: Contribution to journalResearch articleContributedpeer-review

Contributors

Abstract

The generation of tailored complex light fields with multi-core fiber (MCF) lensless microendoscopes is widely used in biomedicine. However, the computer-generated holograms (CGHs) used for such applications are typically generated by iterative algorithms, which demand high computation effort, limiting advanced applications like fiber-optic cell manipulation. The random and discrete distribution of the fiber cores in an MCF induces strong spatial aliasing to the CGHs, hence, an approach that can rapidly generate tailored CGHs for MCFs is highly demanded. We demonstrate a novel deep neural network—CoreNet, providing accurate tailored CGHs generation for MCFs at a near video rate. The CoreNet is trained by unsupervised learning and speeds up the computation time by two magnitudes with high fidelity light field generation compared to the previously reported CGH algorithms for MCFs. Real-time generated tailored CGHs are on-the-fly loaded to the phase-only spatial light modulator (SLM) for near video-rate complex light fields generation through the MCF microendoscope. This paves the avenue for real-time cell rotation and several further applications that require real-time high-fidelity light delivery in biomedicine.

Details

Original languageEnglish
Article number7732
JournalScientific reports
Volume12
Issue number1
Publication statusPublished - 11 May 2022
Peer-reviewedYes

External IDs

PubMed 35546604
WOS 000794011500011
unpaywall 10.1038/s41598-022-11803-7
Mendeley bea4716d-f39f-3d25-9a53-9a5a445d24ed
ORCID /0000-0002-8321-7488/work/183164858

Keywords

ASJC Scopus subject areas

Keywords

  • Algorithms, Deep Learning, Fiber Optic Technology, Holography, Neural Networks, Computer