Randomized parcellation based inference

Research output: Contribution to journalResearch articleContributedpeer-review

Contributors

  • Benoit Da Mota - , INRIA - Institut national de recherche en informatique et en automatique, French Alternative Energies and Atomic Energy Commission (CEA) (Author)
  • Virgile Fritsch - , INRIA - Institut national de recherche en informatique et en automatique, French Alternative Energies and Atomic Energy Commission (CEA) (Author)
  • Gaël Varoquaux - , INRIA - Institut national de recherche en informatique et en automatique, French Alternative Energies and Atomic Energy Commission (CEA) (Author)
  • Tobias Banaschewski - , Central Institute of Mental Health (CIMH), Heidelberg University  (Author)
  • Gareth J. Barker - , King's College London (KCL) (Author)
  • Arun L.W. Bokde - , Trinity College Dublin (Author)
  • Uli Bromberg - , University of Hamburg (Author)
  • Patricia Conrod - , King's College London (KCL), University of Montreal (Author)
  • Jürgen Gallinat - , Charité – Universitätsmedizin Berlin (Author)
  • Hugh Garavan - , Trinity College Dublin, University of Vermont (Author)
  • Jean Luc Martinot - , INSERM - Institut national de la santé et de la recherche médicale, Assistance publique – Hôpitaux de Paris (Author)
  • Frauke Nees - , Central Institute of Mental Health (CIMH), Heidelberg University  (Author)
  • Tomas Paus - , University of Toronto, University of Nottingham, McGill University Health Centre (Author)
  • Zdenka Pausova - , University of Toronto (Author)
  • Marcella Rietschel - , Central Institute of Mental Health (CIMH), Heidelberg University  (Author)
  • Michael N. Smolka - , Neuroimaging Center, Department of Psychiatry and Psychotherapy (Author)
  • Andreas Ströhle - , Charité – Universitätsmedizin Berlin (Author)
  • Vincent Frouin - , French Alternative Energies and Atomic Energy Commission (CEA) (Author)
  • Jean Baptiste Poline - , French Alternative Energies and Atomic Energy Commission (CEA), University of California at Berkeley (Author)
  • Bertrand Thirion - , INRIA - Institut national de recherche en informatique et en automatique, French Alternative Energies and Atomic Energy Commission (CEA) (Author)

Abstract

Neuroimaging group analyses are used to relate inter-subject signal differences observed in brain imaging with behavioral or genetic variables and to assess risks factors of brain diseases. The lack of stability and of sensitivity of current voxel-based analysis schemes may however lead to non-reproducible results. We introduce a new approach to overcome the limitations of standard methods, in which active voxels are detected according to a consensus on several random parcellations of the brain images, while a permutation test controls the false positive risk. Both on synthetic and real data, this approach shows higher sensitivity, better accuracy and higher reproducibility than state-of-the-art methods. In a neuroimaging-genetic application, we find that it succeeds in detecting a significant association between a genetic variant next to the COMT gene and the BOLD signal in the left thalamus for a functional Magnetic Resonance Imaging contrast associated with incorrect responses of the subjects from a Stop Signal Task protocol.

Details

Original languageEnglish
Pages (from-to)203-215
Number of pages13
JournalNeuroImage
Volume2024
Issue number89
Publication statusPublished - 1 Apr 2014
Peer-reviewedYes

External IDs

PubMed 24262376
ORCID /0000-0001-5398-5569/work/161890821

Keywords

ASJC Scopus subject areas

Keywords

  • Group analysis, Multiple comparisons, Parcellation, Permutations, Reproducibility

Library keywords