Quantification of gas-accessible microporosity in metal-organic framework glasses

Research output: Contribution to journalResearch articleContributedpeer-review

Contributors

  • Louis Frentzel-Beyme - , Dortmund University of Technology (Author)
  • Pascal Kolodzeiski - , Dortmund University of Technology (Author)
  • Jan Benedikt Weiß - , Dortmund University of Technology (Author)
  • Andreas Schneemann - , Chair of Inorganic Chemistry I, TUD Dresden University of Technology (Author)
  • Sebastian Henke - , Dortmund University of Technology (Author)

Abstract

Metal-organic framework (MOF) glasses are a new class of glass materials with immense potential for applications ranging from gas separation to optics and solid electrolytes. Due to the inherent difficulty to determine the atomistic structure of amorphous glasses, the intrinsic structural porosity of MOF glasses is only poorly understood. Here, we investigate the porosity features (pore size and pore limiting diameter) of a series of prototypical MOF glass formers from the family of zeolitic imidazolate frameworks (ZIFs) and their corresponding glasses. CO2 sorption at 195 K allows quantifying the microporosity of these materials in their crystalline and glassy states, also providing excess to the micropore volume and the apparent density of the ZIF glasses. Additional hydrocarbon sorption data together with X-ray total scattering experiments prove that the porosity features of the ZIF glasses depend on the types of organic linkers. This allows formulating design principles for a targeted tuning of the intrinsic microporosity of MOF glasses. These principles are counterintuitive and contrary to those established for crystalline MOFs but show similarities to strategies previously developed for porous polymers.

Details

Original languageEnglish
Article number7750
JournalNature communications
Volume13
Issue number1
Publication statusPublished - Dec 2022
Peer-reviewedYes

External IDs

PubMed 36517486