Pushing the Limits of an FCN and A CRF Towards Near-Ideal Vertebrae Labelling.

Research output: Contribution to book/Conference proceedings/Anthology/ReportConference contributionContributedpeer-review

Contributors

Abstract

In this work, we propose a simple pipeline for labelling vertebrae in a spine CT image composed of a fully convolutional neural network (FCN) and a conditional random field (CRF). Firstly, we adapt the high-resolution network to work on three-dimensional spine CT images and train them with recent advances in deep learning to regress spatial likelihood maps of the vertebral locations. This sets a strong baseline performance for fully automated identification, resulting in a performance comparable to prior state-of-art. Secondly, we employ a prior-informed CRF conditioned on the predicted likelihood maps of the HRNet, thus refining the location predictions. Our custom FCN-CRF solution produces state-of-the-art results in automated labelling tasks for three benchmark datasets achieving identification rates higher than 97%. Finally, we design an interaction module to perform drag-and-drop correction on the CRF output graph. This semi-automated solution achieves near-100% identification with minimal interaction (measured in actions per scan). Code for this work is published at https://github.com/JannikIrmai/interactive-fcn-crf.

Details

Original languageEnglish
Title of host publication2023 IEEE 20th International Symposium on Biomedical Imaging (ISBI), Cartagena, Colombia
Pages1-5
Number of pages5
ISBN (electronic)978-1-6654-7358-3
Publication statusPublished - 2023
Peer-reviewedYes

Publication series

SeriesIEEE International Symposium on Biomedical Imaging (ISBI)
ISSN1945-7928

External IDs

Scopus 85172096418
ORCID /0000-0001-5036-9162/work/143781903
Mendeley 35e2ce74-db66-351b-a02d-e14f78f4c3c7

Keywords

Keywords

  • conditional random fields, fully convolutional neural network, landmark detection, spine, vertebrae