Protein-Enabled Synthesis of Monodisperse Titania Nanoparticles On and Within Polyelectrolyte Matrices

Research output: Contribution to journalResearch articleContributedpeer-review



Here, the results of a study of the mechanism of bio-enabled surface-mediated titania nanoparticle synthesis with assistance of polyelectrolyte surfaces are reported. By applying atomic force microscopy, surface force spectroscopy, circular dichroism, and in situ attenuated total reflection Fourier-transform infrared spectroscopy, structural changes of rSilC-silaffin upon its adsorption to polyelectrolyte surfaces prior to and during titania nanoparticle growth are revealed. It is demonstrated that the adhesion of rSilC-silaffin onto polyelectrolyte surfaces results in its reorganization from a random-coil conformation in solution into a mixed secondary structure with both random coil and β-sheet structures presented. Moreover, the protein forms a continuous molecularly thin layer with well-defined monodisperse nanodomains of lateral dimensions below 20 nm. It is also shown that rSilC embedded inside the polylelectrolyte matrix preserves its titania formation activity. It is suggested that the surface-mediated, bio-enabled synthesis of nanostructured materials might be useful to develop general procedures for controlled growth of inorganic nanomaterials on reactive organic surfaces, which opens new perspectives in the design of tailored, in situ grown, hybrid inorganic–organic nanomaterials.


Original languageEnglish
Pages (from-to)2303-2311
Number of pages9
JournalAdvanced functional materials
Issue number14
Publication statusPublished - 24 Jul 2009

External IDs

Scopus 67651204332
ORCID /0000-0002-4533-8860/work/142241030