Prediction of rear-end conflict frequency using multiple-location traffic parameters
Research output: Contribution to journal › Research article › Contributed › peer-review
Contributors
Abstract
Traffic conflicts are heavily correlated with traffic collisions and may provide insightful information on the failure mechanism and factors that contribute more towards a collision. Although proactive traffic management systems have been supported heavily in the research community, and autonomous vehicles (AVs) are soon to become a reality, analyses are concentrated on very specific environments using aggregated data. This study aims at investigating –for the first time- rear-end conflict frequency in an urban network level using vehicle-to-vehicle interactions and at correlating frequency with the corresponding network traffic state. The Time-To-Collision (TTC) and Deceleration Rate to Avoid Crash (DRAC) metrics are utilized to estimate conflict frequency on the current network situation, as well as on scenarios including AV characteristics. Three critical conflict points are defined, according to TTC and DRAC thresholds. After extracting conflicts, data are fitted into Zero-inflated and also traditional Negative Binomial models, as well as quasi-Poisson models, while controlling for endogeneity, in order to investigate contributory factors of conflict frequency. Results demonstrate that conflict counts are significantly higher in congested traffic and that high variations in speed increase conflicts. Nevertheless, a comparison with simulated AV traffic and the use of more surrogate safety indicators could provide more insight into the relationship between traffic state and traffic conflicts in the near future.
Details
Original language | English |
---|---|
Article number | 106007 |
Journal | Accident Analysis and Prevention |
Volume | 152 |
Publication status | Published - Mar 2021 |
Peer-reviewed | Yes |
Externally published | Yes |
External IDs
Scopus | 85100379207 |
---|
Keywords
ASJC Scopus subject areas
Keywords
- Count data modelling, Safety, Surrogate safety measures, Traffic conflicts