Plasticity of tyrosine hydroxylase and serotonergic systems in the regenerating spinal cord of adult zebrafish
Research output: Contribution to journal › Research article › Contributed › peer-review
Contributors
Abstract
Monoaminergic innervation of the spinal cord has important modulatory functions for locomotion. Here we performed a quantitative study to determine the plastic changes of tyrosine hydroxylase-positive (TH1 +; mainly dopaminergic), and serotonergic (5-HT +) terminals and cells during successful spinal cord regeneration in adult zebrafish. TH1 + innervation in the spinal cord is derived from the brain. After spinal cord transection, TH1 + immunoreactivity is completely lost from the caudal spinal cord. Terminal varicosities increase in density rostral to the lesion site compared with unlesioned controls and are re-established in the caudal spinal cord at 6 weeks post lesion. Interestingly, axons mostly fail to re-innervate more caudal levels of the spinal cord even after prolonged survival times. However, densities of terminal varicosities correlate with recovery of swimming behavior, which is completely lost again after re-lesion of the spinal cord. Similar observations were made for terminals derived from descending 5-HT + axons from the brain. In addition, spinal 5-HT + neurons were newly generated after a lesion and transiently increased in number up to fivefold, which depended in part on hedgehog signaling. Overall, TH1 + and 5-HT + innervation is massively altered in the successfully regenerated spinal cord of adult zebrafish. Despite these changes in TH and 5-HT systems, a remarkable recovery of swimming capability is achieved, suggesting significant plasticity of the adult spinal network during regeneration.
Details
Original language | English |
---|---|
Pages (from-to) | 933-951 |
Number of pages | 19 |
Journal | Journal of Comparative Neurology |
Volume | 520 |
Issue number | 5 |
Publication status | Published - 1 Apr 2012 |
Peer-reviewed | Yes |
Externally published | Yes |
External IDs
PubMed | 21830219 |
---|
Keywords
ASJC Scopus subject areas
Keywords
- 5-HT, Neurogenesis, Regeneration, Sonic hedgehog, Tyrosine hydroxylase