Photocatalytic degradation of methylene blue at nanostructured ZnO thin films
Research output: Contribution to journal › Research article › Contributed › peer-review
Contributors
Abstract
The photocatalytic degradation of the wastewater dye pollutant methylene blue (MB) at ZnO nanostructured porous thin films, deposited by direct current reactive magnetron sputtering on Si substrates, was studied. It was observed that over 4 photocatalytic cycles (0.3 mg · l−1 MB solution, 540 minUV irradiation), the rate constant k of MB degradation decreased by ∼50%, varying in the range (1.54 ÷ 0.78) · 10-9 (mol·l−1·min−1). For a deeper analysis of the photodegradation mechanism, detailed information on the nanostructured ZnO surface morphology and local surface and subsurface chemistry (nonstoichiometry) were obtained by using scanning electron microscopy (SEM) and x-ray photoelectron spectroscopy (XPS) as complementary analytical methods. The SEM studies revealed that at the surface of the nanostructured ZnO thin films a coral reef structure containing polycrystalline coral dendrites is present, and that, after the photocatalytic experiments, the sizes of individual crystallites increased, varying in the range 43 ÷ 76 nm for the longer axis, and in the range 28 ÷ 58 nm for the shorter axis. In turn, the XPS studies showed a slight non-stoichiometry, mainly defined by the relative [O]/[Zn] concentration of ca. 1.4, whereas [C]/[Zn] was ca. 1.2, both before and after the photocatalytic experiments. This phenomenon was directly related to the presence of superficial ZnO lattice oxygen atoms that can participate in the oxidation of the adsorbed MB molecules, as well as to the presence of surface hydroxyl groups acting as hole-acceptors to produce OH· radicals, which can be responsible for the generation of superoxide ions. In addition, after experiments, the XPS measurements revealed the presence of carboxyl and carbonyl functional groups, ascribable to the oxidation by-products formed during the photodegradation of MB.
Details
Original language | English |
---|---|
Article number | 155702 |
Number of pages | 11 |
Journal | Nanotechnology |
Volume | 34 |
Issue number | 15 |
Publication status | Published - 9 Apr 2023 |
Peer-reviewed | Yes |
External IDs
Scopus | 85147093772 |
---|---|
PubMed | 36595265 |
Mendeley | f0e30c2e-e305-397e-9309-5e7807fc2e42 |
WOS | 000921694200001 |
Keywords
Research priority areas of TU Dresden
DFG Classification of Subject Areas according to Review Boards
- Theoretical Chemistry: Molecules, Materials, Surfaces
- Theoretical Chemistry: Electron Structure, Dynamics, Simulation
- Theoretical Condensed Matter Physics
- Computer-aided Material Design and Simulation of Material Behaviour from Atomistic to Microscopic Scale
- Synthesis and Properties of Functional Materials
- Experimental Condensed Matter Physics
Subject groups, research areas, subject areas according to Destatis
Sustainable Development Goals
ASJC Scopus subject areas
Keywords
- immobilized photocatalysts, methylene blue, photocatalytic degradation, ZnO thin films nanostructures, Photocatalytic degradation, Immobilized photocatalysts, Methylene blue