Parameter Study of Geometrically Induced Flow Maldistribution in Shell and Tube Heat Exchangers

Research output: Contribution to journalResearch articleContributedpeer-review

Abstract

Shell and tube heat exchangers (STHEs) are the most common type of heat exchanger in preheat trains (PHT) of oil refineries and in chemical process plants. Most commercial design software tools for STHE assume uniform distribution over all tubes of a tube bundle. This leads to various challenges in the operation of the affected devices. Flow maldistribution reduces heat duty of STHE in many applications and supports fouling buildup in fluids that tend to particle, bio, and crystallization fouling (Verein Deutscher Ingenieure, ed., 2010, Heat Atlas, 2nd ed., VDI-Buch., Springer-Verlag). In this article, a fluid mechanics study about tube side flow distribution of crude oil and related hydrocarbons in two-pass PHT heat exchangers is described. It is shown that the amount of flow maldistribution varies significantly between the different STHE designs. Therefore, a parameter study was conducted to investigate reasons for maldistribution. For instance, the nozzles diameter, type, and orientation were identified as crucial parameters. In consequence, simple design suggestions for reducing tube side flow maldistribution are proposed.

Details

Original languageEnglish
Article number101002
Journal Journal of thermal science and engineering applications / ASME
Volume14
Issue number10
Publication statusPublished - Oct 2022
Peer-reviewedYes

External IDs

Scopus 85126781278
Mendeley 630d3e6b-b15b-3275-9b5a-1dbab8c7aea3
unpaywall 10.1115/1.4053633
WOS 000849077800004
ORCID /0000-0001-9324-5880/work/142236615

Keywords

Subject groups, research areas, subject areas according to Destatis

Keywords

  • erngy efficiency, energy systems, fouling, heat and mass transfer, heat recovery, energy efficiency, energy systems, experimental techniques, flow maldistribution, fouling, heat and mass transfer, heat exchangers, heat recovery, heat transfer enhancement, heat transfer in manufacturing, shell-and-tube heat exchanger, thermal systems