Pan-cancer image-based detection of clinically actionable genetic alterations
Research output: Contribution to journal › Research article › Contributed › peer-review
Contributors
Abstract
Molecular alterations in cancer can cause phenotypic changes in tumor cells and their microenvironment. Routine histopathology tissue slides, which are ubiquitously available, can reflect such morphological changes. Here, we show that deep learning can consistently infer a wide range of genetic mutations, molecular tumor subtypes, gene expression signatures and standard pathology biomarkers directly from routine histology. We developed, optimized, validated and publicly released a one-stop-shop workflow and applied it to tissue slides of more than 5,000 patients across multiple solid tumors. Our findings show that a single deep learning algorithm can be trained to predict a wide range of molecular alterations from routine, paraffin-embedded histology slides stained with hematoxylin and eosin. These predictions generalize to other populations and are spatially resolved. Our method can be implemented on mobile hardware, potentially enabling point-of-care diagnostics for personalized cancer treatment. More generally, this approach could elucidate and quantify genotype–phenotype links in cancer.
Details
Original language | English |
---|---|
Pages (from-to) | 789-799 |
Number of pages | 11 |
Journal | Nature cancer |
Volume | 1 |
Issue number | 8 |
Publication status | Published - 1 Aug 2020 |
Peer-reviewed | Yes |
Externally published | Yes |
External IDs
PubMed | 33763651 |
---|