Optimization of performance and emission of compression ignition engine fueled with propylene glycol and biodiesel–diesel blends using artificial intelligence method of ANN-GA-RSM

Research output: Contribution to journalResearch articleContributedpeer-review

Contributors

  • Haleh Karimmaslak - , University of Mohaghegh Ardebili (Author)
  • Bahman Najafi - , University of Mohaghegh Ardebili (Author)
  • Shahab S. Band - , Duy Tan University, National Yunlin University of Science and Technology (Author)
  • Sina Ardabili - , University of Mohaghegh Ardebili (Author)
  • Farid Haghighat-Shoar - , University of Mohaghegh Ardebili (Author)
  • Amir Mosavi - , TUD Dresden University of Technology, Norwegian University of Life Sciences, Oxford Brookes University (OBU), Óbuda University (Author)

Abstract

The present study proposes the hybrid machine learning algorithm of artificial neural network-genetic algorithm-response surface methodology (ANN-GA-RSM) to modelthe performance and the emissionsof a single cylinder diesel engine fueled by diesel and propylene glycol additive. The evaluations areperformed using the correlation coefficient (CC), and the root mean square error (RMSE) values. The best model for prediction of the dependent variables is reported ANN-GA with the RMSE values of 0.0398, 0.0368, 0.0529, 0.0354, 0.0509 and 0.0409 and CC 0.988, 0.987, 0.977, 0.994, 0.984, 0.990, respectively for brake specific fuel consumption (BSFC), brake thermal efficiency (BTE), CO, CO2, NOx and SO2. The proposed hybrid model reduces BSFC, NOx, and CO by −30.82%, 21.32%, and 11.32%, respectively. The model also increases the engine efficiency and CO2 emission by 17.29% and 31.05%, respectively, compared to a single RSM in the optimized level of independent variables (69% of biodiesel's oxygen content and 32% of the oxygen content of propylene glycol).

Details

Original languageEnglish
Pages (from-to)413-425
Number of pages13
JournalEngineering applications of computational fluid mechanics
Volume15
Issue number1
Publication statusPublished - 2021
Peer-reviewedYes

Keywords

Keywords

  • artificial intelligence, biodiesel, machine learning, Propylene glycol, sustainable fuel