Optimization of Continuous Queries in Federated Database and Stream Processing Systems

Research output: Contribution to book/conference proceedings/anthology/reportConference contributionContributedpeer-review

Contributors

Abstract

The constantly increasing number of connected devices and sensors results in increasing volume and velocity of sensor-based streaming data. Traditional approaches for processing high velocity sensor data rely on stream processing engines. However, the increasing complexity of continuous queries executed on top of high velocity data has resulted in growing demand for federated systems composed of data stream processing engines and database engines. One of major challenges for such systems is to devise the optimal query execution plan to maximize the throughput of continuous queries. In this paper we present a general framework for federated database and stream processing systems, and introduce the design and implementation of a cost-based optimizer for optimizing relational continuous queries in such systems. Our optimizer uses characteristics of continuous queries and source data streams to devise an optimal placement for each operator of a continuous query. This fine level of optimization, combined with the estimation of the feasibility of query plans, allows our optimizer to devise query plans which result in 8 times higher throughput as compared to the baseline approach which uses only stream processing engines. Moreover, our experimental results showed that even for simple queries, a hybrid execution plan can result in 4 times and 1.6 times higher throughput than a pure stream processing engine plan and a pure database engine plan, respectively.

Details

Original languageEnglish
Title of host publicationBTW
Publication statusPublished - 2015
Peer-reviewedYes

Keywords

Research priority areas of TU Dresden

DFG Classification of Subject Areas according to Review Boards