On the Maxwell and Friedrichs/Poincaré constants in ND

Research output: Contribution to journalResearch articleContributedpeer-review

Contributors

Abstract

We prove that for bounded and convex domains in arbitrary dimensions, the Maxwell constants are bounded from below and above by Friedrichs’ and Poincaré’s constants, respectively. Especially, the second positive Maxwell eigenvalues in ND are bounded from below by the square root of the second Neumann-Laplace eigenvalue.

Details

Original languageEnglish
Pages (from-to)957-987
Number of pages31
JournalMathematische Zeitschrift
Volume293
Issue number3-4
Publication statusPublished - Dec 2019
Peer-reviewedYes

External IDs

ORCID /0000-0003-4155-7297/work/145224261
WOS 000495574800004

Keywords

ASJC Scopus subject areas

Keywords

  • Electro statics, Friedrichs constant, Friedrichs inequality, Magneto statics, Maxwell constant, Maxwell’s equations, Poincaré constant, Poincaré inequality, Second Maxwell eigenvalue