Numerical Analysis of Inhomogeneous Parameters of Paperboard Using Tensile Tests
Research output: Contribution to book/Conference proceedings/Anthology/Report › Conference contribution › Contributed › peer-review
Contributors
Abstract
For pure metals, typically a homogeneous distribution of material properties is assumed. This assumption reduces the complexity of the models significantly. For inhomogeneous materials like paperboard, however, this assumption is questionable. Experimental findings indicate that the structural inhomogeneity can lead to variations in mechanical properties, which in turn reduce the robustness of processes and require actions to control the product quality. In this work, we introduce an approach to modeling the local material structure in numerical simulations and investigate the material response to an uniaxial tensile test. The effect of various inhomogeneities, e.g., distribution of mass, density, and fiber orientation, on material properties was investigated, and it was found that fiber orientation has the greatest effect in most cases, while the effect of density is usually the least.
Details
Original language | English |
---|---|
Title of host publication | Numerical Methods in Industrial Forming Processes - Numiform 2023 |
Editors | Jan Kusiak, Łukasz Rauch, Krzysztof Regulski |
Publisher | Springer Science and Business Media B.V. |
Pages | 225-238 |
Number of pages | 14 |
ISBN (electronic) | 978-3-031-58006-2 |
ISBN (print) | 978-3-031-58005-5, 978-3-031-58008-6 |
Publication status | Published - 2024 |
Peer-reviewed | Yes |
Externally published | Yes |
Publication series
Series | Lecture Notes in Mechanical Engineering |
---|---|
ISSN | 2195-4356 |
Conference
Title | 14th International Conference on Numerical Methods in Industrial Forming Processes |
---|---|
Abbreviated title | Numiform 2023 |
Conference number | 14 |
Duration | 25 - 29 June 2023 |
Website | |
Location | AGH University of Krakow & Online |
City | Kraków |
Country | Poland |
Keywords
ASJC Scopus subject areas
Keywords
- Distribution, Inhomogeneous material, Material behavior, Numerical simulation