Noninvasive assessment and quantification of tumour vascularisation using MRI and CT in a tumour model with modifiable angiogenesis - An animal experimental prospective cohort study

Research output: Contribution to journalResearch articleContributedpeer-review

Contributors

Abstract

BACKGROUND: To investigate vascular-related pathophysiological characteristics of two human lung cancers with modifiable vascularisation using MRI and CT.

METHODS: Tumour xenografts with modifiable vascularisation were established in 71 rats (approval by the Animal Care Committee was obtained) by subcutaneous transplantation of two human non-small-cell lung cancer (NSCLC) cells (A549, H1299) either alone or co-transplanted with vascular growth promoters. The vascularity of the tumours was assessed noninvasively by MRI diffusion-weighted-imaging (DWI), T2-weighted, and time-of-flight (TOF) sequences) as well as contrast-enhanced CT (CE-CT), using clinical scanners. As a reference standard, histological examinations (CD-31, fluorescent beads) were done after explantation.

RESULTS: Microvessel density (MVD) was higher in co-transplanted tumours (171 ± 19 number/mm2) than in non-co-transplanted tumours (111 ± 11 number/mm2; p = 0.002). Co-transplanted tumours showed higher growth rates and larger tumour vessels at TOF-MRI as well as larger necrotic areas at CE-CT. In co-transplanted tumours, DWI revealed higher cellularity (lower minimal ADCdiff 166 ± 15 versus 346 ± 27 mm2/s × 10-6; p < 0.001), highly necrotic areas (higher maximal ADCdiff 1695 ± 65 versus 1320 ± 59 mm2/s × 10-6; p < 0.001), and better-perfused tumour stroma (higher ADCperf 723 ± 36 versus 636 ± 51 mm2/s × 10-6; p = 0.005). Significant correlations were found using qualitative and quantitative parameters: maximal ADCperf and MVD (r = 0.326); maximal ADCdiff and relative necrotic volume on CE-CT (r = 0.551); minimal ADCdiff and MVD (r = -0.395).

CONCLUSIONS: Pathophysiological differences related to vascular supply in two human lung cancer cell lines with modifiable vascularity are quantifiable with clinical imaging techniques. Imaging parameters of vascularisation correlated with the results of histology. DWI was able to characterise both the extent of necrosis and the level of perfusion.

Details

Original languageEnglish
Article number15
JournalEuropean radiology experimental
Volume1
Issue number1
Publication statusPublished - 2017
Peer-reviewedYes

External IDs

PubMed 29708186
PubMedCentral PMC5909347
Scopus 85061200270
ORCID /0000-0001-8494-1403/work/145699017

Keywords

Sustainable Development Goals