NetPU-M: A Generic Reconfigurable Neural Network Accelerator Architecture for MLPs

Research output: Contribution to book/Conference proceedings/Anthology/ReportConference contributionContributedpeer-review

Abstract

Recent research widely deployed Neural Networks (NNs) in various scenarios, such as IoT systems, wearable devices, or smart sensors. However, the complex application scenarios cause the rapid extension of network model size and the requirement for higher-performance hardware platforms. Related works apply Heterogeneous Streaming Dataflow (HSD) and Processing Element Matrix (PEM) architectures as the most popular schemes for FPGA-based implementation of NN accelerator: 1) HSD architecture implements a complete network for given trained models on FPGA with simplified control but more hardware consumption; 2) PEM architecture implements reusable neuron structures controlled by runtime environments/drivers providing the generic acceleration supports for different network models. Our work explores a new hybrid architecture based on HSD and PEM to implement a reusable partial network structure on FPGA and achieve generic acceleration supports for different network models with simplffied runtime control. This architecture supports scalable, mixable, quantized precision, and selectable activation functions, including ReLU, Sigmoid, Tanh, Sign, and Multi-Thresholds. Data stream transmission can reset the accelerator configuration in runtime without hardware implementation changes for different networks. Our design fully supports the generic inference acceleration for different Multi-Layer Perceptron (MLP) models.

Details

Original languageEnglish
Title of host publication2023 IEEE International Parallel and Distributed Processing Symposium Workshops, IPDPSW 2023
PublisherInstitute of Electrical and Electronics Engineers (IEEE)
Pages85-92
Number of pages8
ISBN (electronic)979-8-3503-1199-0
Publication statusPublished - 2023
Peer-reviewedYes

Conference

Title37th IEEE International Parallel and Distributed Processing Symposium
Abbreviated titleIPDPS 2023
Conference number37
Duration15 - 19 May 2023
Website
LocationHilton St. Petersburg Bayfront
CitySt. Petersburg
CountryUnited States of America

Keywords

Keywords

  • FPGA, Generic Hardware Accelerator, Neural Network, Quantization