Monolithically integrated micro-supercapacitors with high areal number density produced by surface adhesive-directed electrolyte assembly
Research output: Contribution to journal › Research article › Contributed › peer-review
Contributors
Abstract
Accurately placing very small amounts of electrolyte on tiny micro-supercapacitors (MSCs) arrays in close proximity is a major challenge. This difficulty hinders the development of densely-compact monolithically integrated MSCs (MIMSCs). To overcome this grand challenge, we demonstrate a controllable electrolyte directed assembly strategy for precise isolation of densely-packed MSCs at micron scale, achieving scalable production of MIMSCs with ultrahigh areal number density and output voltage. We fabricate a patterned adhesive surface across MIMSCs, that induce electrolyte directed assembly on 10,000 highly adhesive MSC regions, achieving a 100 µm-scale spatial separation between each electrolyte droplet within seconds. The resultant MIMSCs achieve an areal number density of 210 cells cm−2 and a high areal voltage of 555 V cm−2. Further, cycling the MIMSCs at 190 V over 9000 times manifests no performance degradation. A seamlessly integrated system of ultracompact wirelessly-chargeable MIMSCs is also demonstrated to show its practicality and versatile applicability.
Details
Original language | English |
---|---|
Article number | 2850 |
Journal | Nature communications |
Volume | 15 |
Issue number | 1 |
Publication status | Published - Dec 2024 |
Peer-reviewed | Yes |