Molecular engineering of naphthalene spacers in low-dimensional perovskites
Research output: Contribution to journal › Research article › Contributed › peer-review
Contributors
Abstract
Hybrid organic-inorganic lead halide perovskites have drawn much interest due to their optical and electronic properties. The ability to fine-tune the structure by the organic component allows for obtaining a wide range of materials with various dimensionalities. Here, we combine experimental and theoretical work to investigate the structures and properties of a series of low-dimensional hybrid organic-inorganic perovskites, based on naphthalene ammonium cations, 2,6-diaminonaphthalene (2,6-DAN), 1-aminonaphthalene (1-AN) and 2-aminonaphthalene (2-AN). All materials exhibit edge- or face-sharing 1D chain structures. Compared to the 2D counterpart containing isomeric 1,5-diaminonaphthalene (1,5-DAN), 1D hybrid materials exhibit broadband light emission arising from the self-trapped excitons (STEs) owing to their highly distorted structure. This work expands the library of low-dimensional hybrid perovskites and opens new possibilities for obtaining broadband-light-emitting materials.
Details
Original language | English |
---|---|
Pages (from-to) | 5024-5031 |
Number of pages | 8 |
Journal | Journal of Materials Chemistry C |
Volume | 11 |
Issue number | 15 |
Publication status | Published - 27 Mar 2023 |
Peer-reviewed | Yes |
External IDs
WOS | 000956380700001 |
---|---|
ORCID | /0000-0001-5873-8751/work/142246448 |
ORCID | /0000-0002-2438-0672/work/142253082 |
ORCID | /0000-0002-4531-691X/work/148607623 |
Keywords
Research priority areas of TU Dresden
DFG Classification of Subject Areas according to Review Boards
- Theoretical Chemistry: Molecules, Materials, Surfaces
- Theoretical Chemistry: Electron Structure, Dynamics, Simulation
- Theoretical Condensed Matter Physics
- Statistical Physics, Soft Matter, Biological Physics, Nonlinear Dynamics
- Thermodynamics and Kinetics as well as Properties of Phases and Microstructure of Materials
- Biomaterials
- Computer-aided Material Design and Simulation of Material Behaviour from Atomistic to Microscopic Scale
- Synthesis and Properties of Functional Materials
- Experimental Condensed Matter Physics
- Physical Chemistry of Molecules, Liquids and Interfaces, Biophysical Chemistry
Subject groups, research areas, subject areas according to Destatis
- Optoelectronics
- Micro- and Nanoelectronics
- Theoretical Physics
- Sensors and Measurement Technology
- Software Technology
- Solid State Physics
- Materials Science
- Virology
- Materials Physics
- Forensic Medicine
- Library Science (general)
- Biomedical Engineering
- Building Materials Technology
- Environmental Engineering (incl. Recycling)
Sustainable Development Goals
- SDG 17 - Partnerships for the Goals
- SDG 7 - Affordable and Clean Energy
- SDG 6 - Clean Water and Sanitation
- SDG 9 - Industry, Innovation, and Infrastructure
- SDG 15 - Life on Land
- SDG 5 - Gender Equality
- SDG 1 - No Poverty
- SDG 11 - Sustainable Cities and Communities
- SDG 13 - Climate Action
- SDG 3 - Good Health and Well-being
- SDG 12 - Responsible Consumption and Production
ASJC Scopus subject areas
Keywords
- White-light emission, Hybrid perovskites, Optical-properties, Halide, Connectivity, Efficient