Modelling the thermo-mechanical behaviour of a rock joint

Research output: Contribution to journalResearch articleContributedpeer-review

Contributors

  • Thanh Son Nguyen - , Canadian Nuclear Safety Commission (Author)
  • Olaf Kolditz - , Helmholtz Centre for Environmental Research (Author)
  • Jeoung Seok Yoon - , Helmholtz Centre Potsdam - German Research Centre for Geosciences (Author)
  • Li Zhuang - , Korean Institute of Civil Engineering and Building Technology (Author)

Abstract

The CNSC, the Canadian regulator for the nuclear industry, participated in DECOVALEX-2023 Task G that focuses on the thermo (T) - hydro (H)- mechanical (M) behaviour of rock joints. Joints are omnipresent in rock masses and are planes of weakness in the host rock. When deep geological repositories (DGRs) for radioactive waste are being considered in areas where rock joints are present, the joints could be preferential pathways for radionuclide migration. Therefore, their THM behaviour must be better understood to assess the safety of the DGR. Under different possible internal and external perturbations, a joint can move by shear and dilation. If the joint crosses the emplacement area of a waste container, the heat generated from the waste can itself induce shearing of the joint. Excessive shear movement can in turn lead to failure of the container, resulting in earlier release of radionuclides. Furthermore, dilation that might accompany shear, results in an increase in the joint aperture creating a faster flow path for radionuclide transport. Mathematical models are important tools that need to be developed and employed, in order to assess joint shear and dilation under different loading conditions, such as the heat generated from the emplaced waste. The authors have developed such a mathematical model based on a macroscopic formulation within the framework of elasto-plasticity. It is verified against analytical solutions and validated against shear under constant normal load tests and thermal shearing tests of joints in granite.

Details

Original languageEnglish
Article number100520
JournalGeomechanics for Energy and the Environment
Volume37
Publication statusPublished - Mar 2024
Peer-reviewedYes
Externally publishedYes

Keywords

Keywords

  • Dilation, Geological disposal, Nuclear waste, Rock joint, Shear, Thermal shearing, Viscoplasticity