Mobility and Deadline-Aware Task Scheduling Mechanism for Vehicular Edge Computing
Research output: Contribution to journal › Research article › Contributed › peer-review
Contributors
Abstract
Vehicular Edge Computing (VEC) is a promising paradigm that provides cloud computing services closer to vehicular users. In VEC, vehicles and communication infrastructures can form pools with computational resources to meet vehicular services with low-latency constraints. These resource pools are known as Vehicular Cloud (VC). The usage of VC resources requires a task scheduling process. In this case, depending on its complexity, a vehicular service can be divided into different tasks. An efficient task scheduling needs to orchestrate where and for how long such tasks will run, considering the available pools, the mobility of nodes, and the tasks deadline constraints. Thus, this article proposes an efficient VC task scheduler based on an approximation heuristic and resources prediction to select the best VC for each task, called MARINA. MARINA aims to analyze the behavior of vehicles that share their computational resources with the VC and make scheduling decisions based on the mobility (VC availability) of these vehicles. Simulation results under a realistic scenario demonstrate the efficiency of MARINA compared to existing state-of-the-art mechanisms in terms of the number of tasks scheduled, monetary cost, system latency, and Central Processing Unit (CPU) utilization.
Details
Original language | English |
---|---|
Pages (from-to) | 11345-11359 |
Number of pages | 15 |
Journal | IEEE Transactions on Intelligent Transportation Systems |
Volume | 24 |
Issue number | 10 |
Publication status | Published - 31 May 2023 |
Peer-reviewed | Yes |
External IDs
Bibtex | nsm-dacosta2023mobility |
---|---|
unpaywall | 10.1109/tits.2023.3276823 |
Scopus | 85161074097 |
WOS | 001006785700001 |
Keywords
Research priority areas of TU Dresden
DFG Classification of Subject Areas according to Review Boards
Subject groups, research areas, subject areas according to Destatis
ASJC Scopus subject areas
Keywords
- Vehicular edge computing, recurrent neural network, resource prediction, task scheduling, Cloud computing, Schedules, Costs, Resource prediction, Task scheduling, Task analysis, Vehicle dynamics, Edge computing, Processor scheduling, Recurrent neural network