MiR-125b regulates calcification of vascular smooth muscle cells

Research output: Contribution to journalResearch articleContributedpeer-review

Contributors

Abstract

Vascular calcification is a prominent feature of atherosclerosis and is closely linked to osteoporosis. Cellular differentiation is regulated by various microRNAs (miRs), including miR-125b, which is known to be involved in osteoblast differentiation. However, no specific miR has been defined that modulates vascular calcification. Herein, we assessed the impact of miR-125b in osteogenic transformation of vascular smooth muscle cells. Osteogenic transdifferentiation of human coronary artery smooth muscle cells was induced by osteogenic medium and enhanced the formation of mineralized matrix, resulting in a significantly higher mineral deposition after 21 days. Increased expression of miR-125b was time-dependent in human coronary artery smooth muscle cells and diminished during osteogenic transdifferentiation. At day 21, miR-125b was significantly reduced (-42%) compared with that in the untreated control. The expression of miR-processing enzymes, RNase III endonucleases DICER1 and DROSHA, was also decreased. Furthermore, inhibition of endogenous miR-125b promoted osteogenic transdifferentiation, as measured by increased alkaline phosphatase activity and matrix mineralization. Expression analysis revealed the osteoblast transcription factor SP7 (osterix) as a target of miR-125b. In vivo, miR-125b was decreased in calcified aortas of apolipoprotein E knockout mice. In conclusion, our results suggest that miR-125b is involved in vascular calcification in vitro and in vivo, at least partially by targeting SP7. Evaluating the role of miRs in arterial calcification in vivo may have important therapeutic implications.

Details

Original languageEnglish
Pages (from-to)1594-1600
Number of pages7
JournalAmerican Journal of Pathology
Volume179
Issue number4
Publication statusPublished - Oct 2011
Peer-reviewedYes

External IDs

PubMed 21806957
ORCID /0000-0002-8691-8423/work/162842624

Keywords

ASJC Scopus subject areas