Microfluidic biochip for studying cellular response to non-homogeneous DC electric fields
Research output: Contribution to journal › Conference article › Contributed › peer-review
Contributors
Abstract
Endogeneous electric fields affect a wide range of cellular functions as migration, wound healing and regeneration. Similar results were observed in the presence of external electric fields. Till date, the phenomenon of electrotaxis was studied only in homogeneous electric field environments. Here, we report on a microfluidic biochip that permits stimulation of cells with stationary, non-homogeneous electric fields, e.g. to simulate the electrical environment during repair processes such wound healing. (C) 2017 The Authors. Published by Elsevier Ltd.
Details
Original language | English |
---|---|
Pages (from-to) | 250-251 |
Number of pages | 2 |
Journal | Procedia Technology |
Volume | 27 |
Publication status | Published - 2017 |
Peer-reviewed | Yes |
Conference
Title | 26th Anniversary World Congress on Biosensors (Biosensors) |
---|---|
Duration | 25 - 27 May 2016 |
City | Gothenburg |
Country | Sweden |
Keywords
Keywords
- Electrotaxis, Microfluidic biochip, non-homogeneous DC electric fields