Microalgae contribution in enhancing the circular economy drive of biochemical conversion systems – A review
Research output: Contribution to journal › Review article › Contributed › peer-review
Contributors
Abstract
The global impact of greenhouse gas emissions requires concerted efforts to reduce emissions and energy use, and to increase carbon capture and sequestration. Promoting the circular economy in CO2 sequestration systems optimises resource use and reduces the emissions burden throughout the supply chain. Carbon capture from anaerobic digestion, composting and fermentation (particularly ethanol) processes offers great opportunities for climate change mitigation. The waste/by-products generated from these processes can limit the need to source nutrients from outside the system and increase the potential for circular economy. The integration of microalgae cultivation with each of anaerobic digestion, composting and ethanol fermentation processes provides a new model for climate change mitigation of biogenic CO2 and circular economy. While this model is limited by high energy consumption and nutrient demand, seasonal variability, operational efficiency and end-user requirements, further research and policy support will go a long way in realising the associated benefits, including in CO2 fixation, nutrient recovery, waste remediation and as an alternative source of animal feed.
Details
Original language | English |
---|---|
Article number | 100203 |
Journal | Carbon resources conversion : CRC |
Volume | 7 |
Issue number | 2 |
Early online date | Oct 2023 |
Publication status | Published - Jan 2024 |
Peer-reviewed | Yes |
External IDs
ORCID | /0000-0001-9506-6077/work/146167086 |
---|---|
ORCID | /0000-0001-5081-2558/work/146167407 |
unpaywall | 10.1016/j.crcon.2023.10.003 |
Mendeley | 3dd30410-bb23-3c02-8d4b-42a319a6613d |
Scopus | 85182880470 |
Keywords
Sustainable Development Goals
ASJC Scopus subject areas
Keywords
- Anaerobic digestion, Circular economy, Composting, Microalgae