Measurement of the production cross section of pairs of isolated photons in pp collisions at 13 TeV with the ATLAS detector

Research output: Contribution to specialist publicationFeatured article/Feature coverContributedpeer-review

Contributors

  • Chair of Experimental Particle Physics
  • TUD Dresden University of Technology
  • Department of Medical Physics and Biomedical Engineering
  • Aix-Marseille Université
  • University of Oklahoma
  • University of Massachusetts
  • University of Göttingen
  • Royal Holloway University of London
  • Brookhaven National Laboratory
  • Tel Aviv University
  • Technion-Israel Institute of Technology
  • Argonne National Laboratory
  • Pontificia Universidad Católica de Chile
  • National Institute for Nuclear Physics
  • Abdus Salam International Centre for Theoretical Physics
  • King's College London (KCL)
  • Johannes Gutenberg University Mainz
  • Laboratoire d'Annecy-le-Vieux de Physique des Particules LAPP
  • AGH University of Science and Technology
  • University of Toronto
  • Brandeis University
  • Northern Illinois University
  • Bogazici University
  • Istanbul University
  • University of Geneva
  • Rutherford Appleton Laboratory
  • University of California at Santa Cruz
  • Université Paris-Saclay
  • Institute for High Energy Physics
  • University of Pavia
  • University College London
  • University of Warwick

Abstract

A measurement of prompt photon-pair production in proton-proton collisions at s = 13 TeV is presented. The data were recorded by the ATLAS detector at the LHC with an integrated luminosity of 139 fb−1. Events with two photons in the well-instrumented region of the detector are selected. The photons are required to be isolated and have a transverse momentum of pT,γ1(2)> 40 (30) GeV for the leading (sub-leading) photon. The differential cross sections as functions of several observables for the diphoton system are measured and compared with theoretical predictions from state-of-the-art Monte Carlo and fixed-order calculations. The QCD predictions from next-to-next-to-leading-order calculations and multi-leg merged calculations are able to describe the measured integrated and differential cross sections within uncertainties, whereas lower-order calculations show significant deviations, demonstrating that higher-order perturbative QCD corrections are crucial for this process. The resummed predictions with parton showers additionally provide an excellent description of the low transverse-momentum regime of the diphoton system. [Figure not available: see fulltext.].

Details

No renderer: customAssociatesEventsRenderPortal,dk.atira.pure.api.shared.model.researchoutput.ContributionToPeriodical

Keywords

ASJC Scopus subject areas

Keywords

  • Hadron-Hadron scattering (experiments), photon production, proton-proton scattering, QCD