Measurement of single top-quark production in the s-channel in proton–proton collisions at √s = 13 TeV with the ATLAS detector

Research output: Contribution to journalResearch articleContributedpeer-review

Contributors

  • The ATLAS collaboration - , University of California at Berkeley, University of Bucharest, iThemba Laboratory for Accelerator Based Sciences, University of Pretoria, University of South Africa, University of Zululand, Cadi Ayyad University, Mohammed VI Polytechnic University, New York University Abu Dhabi, University of Georgia (Tbilisi), CERN (Author)
  • Chair of Experimental Particle Physics
  • Institute of Nuclear and Particle Physics
  • Chair of Particle Physics
  • Aix-Marseille Université
  • University of Oklahoma
  • University of Massachusetts
  • University of Göttingen
  • Brookhaven National Laboratory
  • Mohammed V University in Rabat
  • Tel Aviv University
  • Technion-Israel Institute of Technology
  • New York University
  • Pontificia Universidad Católica de Chile
  • National Institute for Nuclear Physics
  • Abdus Salam International Centre for Theoretical Physics
  • King's College London (KCL)
  • Laboratoire d'Annecy-le-Vieux de Physique des Particules LAPP
  • AGH University of Science and Technology
  • University of Toronto
  • Brandeis University
  • Northern Illinois University
  • Istanbul University
  • University of Geneva
  • Rutherford Appleton Laboratory
  • University of California at Santa Cruz
  • Institute for High Energy Physics
  • University of Pavia
  • Johannes Gutenberg University Mainz
  • Alexandru Ioan Cuza University of Iaşi
  • University of Granada
  • Azerbaijan National Academy of Sciences (ANAS)
  • McGill University
  • TUD Dresden University of Technology
  • University of Warwick

Abstract

A measurement of single top-quark production in the s-channel is performed in proton–proton collisions at a centre-of-mass energy of 13 TeV with the ATLAS detector at the CERN Large Hadron Collider. The dataset corresponds to an integrated luminosity of 139 fb −1. The analysis is performed on events with an electron or muon, missing transverse momentum and exactly two b-tagged jets in the final state. A discriminant based on matrix element calculations is used to separate single-top-quark s-channel events from the main background contributions, which are top-quark pair production and W-boson production in association with jets. The observed (expected) signal significance over the background-only hypothesis is 3.3 (3.9) standard deviations, and the measured cross-section is σ=8.2−2.9+3.5 pb, consistent with the Standard Model prediction of σSM=10.32−0.36+0.40 pb. [Figure not available: see fulltext.]

Details

Original languageEnglish
Article number191
JournalJournal of high energy physics
Volume2023
Issue number6
Publication statusPublished - Jul 2023
Peer-reviewedYes

External IDs

ORCID /0000-0001-6480-6079/work/172566415
ORCID /0000-0003-0546-1634/work/173516650

Keywords

ASJC Scopus subject areas

Keywords

  • Hadron-Hadron Scattering, Top Physics