Maldistribution susceptibility of monolith reactors: Case study of glucose hydrogenation performance
Research output: Contribution to journal › Research article › Contributed › peer-review
Contributors
Abstract
In this work an ultrafast electron beam X-ray modality was applied for the first time to characterize the gas–liquid Taylor flow inside each channel of an opaque honeycomb monolith structure (65 cpsi) for (uG,S=0.1 … 0.5 m/s) and (uL,S=0.2 m/s). Significant spatial and temporal deviations in the phase holdup as well as in the gas bubble and liquid slug lengths were found. To evaluate the impact of Taylor flow maldistribution on the reactor performance, the data of more than 125,000 unit cells were used to simulate the reactor productivity in the hydrogenation of glucose. The results verify that a monolith reactor solely designed by using superficial velocities and empirical correlations for gas bubble and liquid slug lengths fails significantly in achieving high product selectivity and the desired conversion. The developed methods are a solid base to design and select proper distributors ensuring the favorable flow configurations for specific chemical processes.
Details
Original language | English |
---|---|
Pages (from-to) | 4346-4364 |
Number of pages | 19 |
Journal | AIChE Journal |
Volume | 62 |
Issue number | 12 |
Publication status | Published - 1 Dec 2016 |
Peer-reviewed | Yes |
Keywords
ASJC Scopus subject areas
Keywords
- glucose hydrogenation, monolith reactor, reactor modelling, Taylor flow, X-ray tomography