Magnetotransport and de Haas-van Alphen measurements in the type-II Weyl semimetal TaIrTe4

Research output: Contribution to journalResearch articleContributedpeer-review

Contributors

  • Seunghyun Khim - , Leibniz Institute for Solid State and Materials Research Dresden, Max Planck Institute for Chemical Physics of Solids (Author)
  • Klaus Koepernik - , Leibniz Institute for Solid State and Materials Research Dresden (Author)
  • Dmitry V. Efremov - , Leibniz Institute for Solid State and Materials Research Dresden (Author)
  • J. Klotz - , Helmholtz-Zentrum Dresden-Rossendorf, TUD Dresden University of Technology (Author)
  • T. Förster - , Helmholtz-Zentrum Dresden-Rossendorf, TUD Dresden University of Technology (Author)
  • J. Wosnitza - , Chair of Physics of High Magnetic Fields, Helmholtz-Zentrum Dresden-Rossendorf (Author)
  • Mihai I. Sturza - , Leibniz Institute for Solid State and Materials Research Dresden (Author)
  • Sabine Wurmehl - , Leibniz Institute for Solid State and Materials Research Dresden, TUD Dresden University of Technology (Author)
  • Christian Hess - , Leibniz Institute for Solid State and Materials Research Dresden, TUD Dresden University of Technology (Author)
  • Jeroen Van Den Brink - , Chair of Solid State Theory, Leibniz Institute for Solid State and Materials Research Dresden, Harvard University (Author)
  • Bernd Büchner - , Chair of Experimental Solid State Physics, Leibniz Institute for Solid State and Materials Research Dresden (Author)

Abstract

The layered ternary compound TaIrTe4 has been predicted to be a type-II Weyl semimetal with only four Weyl points just above the Fermi energy. Performing magnetotransport measurements on this material we find that the resistivity does not saturate for fields up to 70 T and follows a ρ∼B1.5 dependence. Angular-dependent de Haas-van Alphen measurements reveal four distinct frequencies. Analyzing these magnetic quantum oscillations by use of density functional theory calculations we establish that in TaIrTe4 the Weyl points are located merely ∼40-50 meV above the chemical potential.

Details

Original languageEnglish
Article number165145
JournalPhysical Review B
Volume94
Issue number16
Publication statusPublished - 19 Oct 2016
Peer-reviewedYes