Magnetic-field-controlled mechanical behavior of magneto-sensitive elastomers in applications for actuator and sensor systems

Research output: Contribution to journalResearch articleContributedpeer-review

Contributors

  • Tatiana I. Becker - , Ilmenau University of Technology (Author)
  • Valter Böhm - , Ilmenau University of Technology (Author)
  • Jhohan Chavez Vega - , Ilmenau University of Technology (Author)
  • Stefan Odenbach - , Chair of Magnetofluiddynamics, Measuring and Automation Technology (Author)
  • Yuriy L. Raikher - , RAS - Institute of Continuous Media Mechanics (Author)
  • Klaus Zimmermann - , Ilmenau University of Technology (Author)

Abstract

The development of actuator and sensor systems with complex adaptive behavior and operating sensitivity is one of the actual scientific challenges. Smart materials like magneto-sensitive elastomers (MSEs) offer great potential for designing such intelligent devices, because they possess unique magnetic-field-dependent properties. The present paper deals with investigations of the free and forced vibrational behavior displayed by cantilever beams of MSEs containing magnetically soft particles in a uniform magnetic field. It is shown experimentally as well as theoretically that the first bending eigenfrequency of MSE beams depends strongly on the strength of an applied magnetic field. The proposed magneto-mechanical model is based on the vibrational dynamics of thin rods and predicts reliably the amplitude–frequency characteristics depending on the geometric configuration of the MSE and its material parameters. It is found that the vibration response of an MSE beam under kinematic excitation of its base can be modified indirectly by a magnetic field control due to the change of the vibration characteristics. As a result, the resonance can occur in different ranges of the excitation frequency. The dependencies of the amplification ratio on the excitation frequency are obtained experimentally and compared with the result provided by the theoretical model. Moreover, investigations on the potential use of the field-induced plasticity effect of MSEs in form-fit gripper applications are presented. This effect can be used to realize shape adaptable system parts. It is found that the mechanical properties of each component and its concentration within the mixture have an impact on the mechanical behavior of the whole MSE compound. Such parameters as the strength of magnetic field and geometry of the MSE sample have influence on the quality of shape adaptation. The evidence presented provides a good basis for the realization of MSE-based actuator and sensor systems with adaptable sensitivity.

Details

Original languageEnglish
Pages (from-to)133-152
Number of pages20
JournalArchive of applied mechanics
Volume89
Issue number1
Publication statusPublished - 15 Jan 2019
Peer-reviewedYes

External IDs

ORCID /0000-0002-4179-2273/work/173053914

Keywords

ASJC Scopus subject areas

Keywords

  • Adaptive sensor element, Amplification ratio, Bending vibrations, Eigenfrequency, Field-induced plasticity, Magneto-sensitive elastomer, Shape adaptation