Magnetic warping in topological insulators

Research output: Contribution to journalResearch articleContributedpeer-review

Contributors

  • Gabriele Naselli - , Chair of Solid State Theory, Leibniz Institute for Solid State and Materials Research Dresden (Author)
  • Ali G. Moghaddam - , Leibniz Institute for Solid State and Materials Research Dresden, Institute for Advanced Studies in Basic Sciences, Zanjan, Tampere University (Author)
  • Solange Di Napoli - , Comisión Nacional de Energía Atómica, Consejo Nacional de Investigaciones Científicas y Técnicas (Author)
  • Verónica Vildosola - , Comisión Nacional de Energía Atómica (Author)
  • Ion Cosma Fulga - , Leibniz Institute for Solid State and Materials Research Dresden (Author)
  • Jeroen Van Den Brink - , Clusters of Excellence ct.qmat: Complexity and Topology in Quantum Matter, Chair of Solid State Theory, Leibniz Institute for Solid State and Materials Research Dresden (Author)
  • Jorge I. Facio - , Leibniz Institute for Solid State and Materials Research Dresden, Consejo Nacional de Investigaciones Científicas y Técnicas, Comisión Nacional de Energía Atómica (Author)

Abstract

We analyze the electronic structure of topological surface states in the family of magnetic topological insulators MnBi2nTe3n+1. We show that, at natural-cleavage surfaces, the Dirac cone warping changes its symmetry from hexagonal to trigonal at the magnetic ordering temperature. In particular, an energy splitting develops between the surface states of the same band index but opposite surface momenta upon formation of the long-range magnetic order. As a consequence, measurements of such energy splittings constitute a simple protocol to detect the magnetic ordering via the surface electronic structure, alternative to the detection of the surface magnetic gap. Interestingly, while the latter signals a nonzero surface magnetization, the trigonal warping predicted here is, in addition, sensitive to the direction of the surface magnetic flux. Our results may be particularly useful when the Dirac point is buried in the projection of the bulk states, caused by certain terminations of the crystal or in hole-doped systems, since in both situations the surface magnetic gap itself is not accessible in photoemission experiments.

Details

Original languageEnglish
Article number033198
JournalPhysical Review Research
Volume4
Issue number3
Publication statusPublished - Jul 2022
Peer-reviewedYes

Keywords

ASJC Scopus subject areas