Local random vector model for semiclassical fractal structure of chaotic resonance states
Research output: Contribution to journal › Research article › Contributed › peer-review
Contributors
Abstract
The semiclassical structure of resonance states of classically chaotic scattering systems with partial escape is investigated. We introduce a local randomization on phase space for the baker map with escape, which separates the smallest multifractal scale from the scale of the Planck cell. This allows for deriving a semiclassical description of resonance states based on a local random vector model and conditional invariance. We numerically demonstrate that the resulting classical measures perfectly describe resonance states of all decay rates γ for the randomized baker map. By decreasing the scale of randomization these results are compared to the deterministic baker map with partial escape. This gives the best available description of its resonance states. Quantitative differences indicate that a semiclassical description for deterministic chaotic systems must take into account that the multifractal structures persist down to the Planck scale.
Details
Original language | English |
---|---|
Article number | 204006 |
Pages (from-to) | 1-25 |
Number of pages | 25 |
Journal | Journal of Physics A: Mathematical and Theoretical |
Volume | 55 |
Issue number | 20 |
Publication status | Published - 21 Apr 2022 |
Peer-reviewed | Yes |
External IDs
unpaywall | 10.1088/1751-8121/ac62b9 |
---|---|
Scopus | 85131142135 |
Mendeley | a72e2226-eeb3-3a9e-b59f-e850d113661f |
WOS | 000787181600001 |
Keywords
DFG Classification of Subject Areas according to Review Boards
ASJC Scopus subject areas
Keywords
- local randomization, quantum chaos, random vector model, resonance states, semiclassical limit