Local and nonlocal spin Seebeck effect in lateral Pt-Cr2O3-Pt devices at low temperatures

Research output: Contribution to journalResearch articleContributedpeer-review

Contributors

Abstract

We have studied thermally driven magnon spin transport (spin Seebeck effect, SSE) in heterostructures of antiferromagnetic α-Cr2O3 and Pt at low temperatures. Monitoring the amplitude of the local and nonlocal SSE signals as a function of temperature, we found that both decrease with increasing temperature and disappear above 100 K and 20 K, respectively. Additionally, both SSE signals show a tendency to saturate at low temperatures. The nonlocal SSE signal decays exponentially for intermediate injector-detector separation, consistent with magnon spin current transport in the relaxation regime. We estimate the magnon relaxation length of our α-Cr2O3 films to be around 500 nm at 3 K. This short magnon relaxation length along with the strong temperature dependence of the SSE signal indicate that temperature-dependent inelastic magnon scattering processes play an important role in the intermediate range magnon transport. Our observation is relevant to low-dissipation antiferromagnetic magnon memory and logic devices involving thermal magnon generation and transport.

Details

Original languageEnglish
Article number0037860
JournalAPL materials
Volume9
Issue number2
Publication statusPublished - Jan 2021
Peer-reviewedYes

External IDs

Mendeley 26aa7074-f04e-3629-b19f-ba9462a6fb20

Keywords