Links among warming, carbon and microbial dynamics mediated by soil mineral weathering

Research output: Contribution to journalResearch articleContributedpeer-review

Contributors

  • S. Doetterl - , Augsburg University, Ghent University (Author)
  • A. A. Berhe - , University of California Merced (Author)
  • C. Arnold - , University of California Merced (Author)
  • S. Bodé - , Ghent University (Author)
  • P. Fiener - , Augsburg University (Author)
  • P. Finke - , Ghent University (Author)
  • L. Fuchslueger - , University of Antwerp, University of Vienna (Author)
  • M. Griepentrog - , Ghent University, ETH Zurich (Author)
  • J. W. Harden - , United States Geological Survey, Stanford University (Author)
  • E. Nadeu - , Université catholique de Louvain (Author)
  • J. Schnecker - , University of Vienna (Author)
  • J. Six - , ETH Zurich (Author)
  • S. Trumbore - , Max Planck Society (Author)
  • K. Van Oost - , Université catholique de Louvain (Author)
  • C. Vogel - , Chair of Soil Resources and Land Use, Technical University of Munich (Author)
  • P. Boeckx - , Ghent University (Author)

Abstract

Quantifying soil carbon dynamics is of utmost relevance in the context of global change because soils play an important role in land–atmosphere gas exchange. Our current understanding of both present and future carbon dynamics is limited because we fail to accurately represent soil processes across temporal and spatial scales, partly because of the paucity of data on the relative importance and hierarchical relationships between microbial, geochemical and climatic controls. Here, using observations from a 3,000-kyr-old soil chronosequence preserved in alluvial terrace deposits of the Merced River, California, we show how soil carbon dynamics are driven by the relationship between short-term biotic responses and long-term mineral weathering. We link temperature sensitivity of heterotrophic respiration to biogeochemical soil properties through their relationship with microbial activity and community composition. We found that soil mineralogy, and in particular changes in mineral reactivity and resulting nutrient availability, impacts the response of heterotrophic soil respiration to warming by altering carbon inputs, carbon stabilization, microbial community composition and extracellular enzyme activity. We demonstrate that biogeochemical alteration of the soil matrix (and not short-term warming) controls the composition of microbial communities and strategies to metabolize nutrients. More specifically, weathering first increases and then reduces nutrient availability and retention, as well as the potential of soils to stabilize carbon.

Details

Original languageEnglish
Pages (from-to)589-593
Number of pages5
JournalNature geoscience
Volume11
Issue number8
Publication statusPublished - 1 Aug 2018
Peer-reviewedYes

External IDs

ORCID /0000-0002-6525-2634/work/167215360

Keywords

ASJC Scopus subject areas