Light and Guest Responsive Behavior in a Porous Coordination Network Enabled by Reversible [2+2] Photocycloaddition
Research output: Contribution to journal › Research article › Contributed › peer-review
Contributors
Abstract
Stimuli-responsive physisorbents that undergo reversible structural transformations induced by external stimuli (e.g. light, guests, or heat) offer the promise of utility in gas storage and separation. Whereas reports on guest or light-responsive sorbents have increased in recent years, we are unaware of reports on sorbents that exhibit both light and guest-induced structural transformations. Herein, we report that the square lattice, sql, topology coordination network Zn(fba)(bis) ⋅ 2DMF (sql-5,6-Zn-α, 5=trans-4,4′-bis(1-imidazolyl)stilbene=bis, 6=2,2-bis(4-carboxyphenyl)hexafluoropropane=H2fba) underwent single-crystal-to-single-crystal transformation (SCSC) upon activation, affording nonporous sql-5,6-Zn-β. Parallel alignment at 3.23 Å of olefinic moieties on adjacent bis ligands in sql-5,6-Zn-α enabled SCSC [2+2] photocycloaddition upon exposure to UV light (365 nm) or sunlight. sql-5,6-Zn-α thereby transformed to mot-5,6-Zn-α, which was subsequently activated to the narrow pore phase mot-5,6-Zn-β. sql-5,6-Zn-β and mot-5,6-Zn-β both exhibited S-shaped adsorption isotherms characteristic of guest-induced structural changes when exposed to CO2 at 195 K (type-F–IV and type F–I, respectively). Cycling experiments conducted upon sql-5,6-Zn-β reduced particle size after cycle 1 and induced transformation into a rare example of a shape memory coordination network, sql-5,6-Zn-γ. Insight into this smorgasbord of SCSC phase changes was gained from in situ PXRD, single crystal XRD and 1H NMR spectroscopy experiments.
Details
Original language | English |
---|---|
Article number | e202404084 |
Journal | Angewandte Chemie - International Edition |
Volume | 63 |
Issue number | 34 |
Publication status | Published - 19 Aug 2024 |
Peer-reviewed | Yes |
External IDs
PubMed | 38863431 |
---|
Keywords
ASJC Scopus subject areas
Keywords
- flexibility, photocycloaddition, porous coordination networks, shape memory, single-crystal-to-single-crystal transformation