Lesion-induced generation of interneuron cell types in specific dorsoventral domains in the spinal cord of adult zebrafish

Research output: Contribution to journalResearch articleContributedpeer-review

Contributors

  • Veronika Kuscha - , University of Edinburgh (Author)
  • Sarah L. Frazer - , University of Edinburgh (Author)
  • Tatyana B. Dias - , University of Edinburgh (Author)
  • Masahiko Hibi - , Nagoya University (Author)
  • Thomas Becker - , University of Edinburgh (Author)
  • Catherina G. Becker - , University of Edinburgh (Author)

Abstract

In contrast to mammals, adult zebrafish regenerate neurons in the lesioned spinal cord. For example, motor neurons are generated from an olig2-expressing population of pMN-like ependymoradial glial cells in a ventrolateral position at the central canal. However, the extent of neuronal regeneration is unclear. Here we show, using a transgenic fish in which V2 interneurons are labeled by green fluorescent protein (GFP) under the control of the vsx1 promoter, that after a complete spinal cord transection, large numbers of V2 interneurons are generated in the vicinity of the lesion site. Tg(vsx1:GFP)+ cells are not present in the unlesioned spinal cord and label with the proliferation marker bromodeoxyuridine (BrdU) after a lesion. Some mediolaterally elongated Tg(vsx1:GFP)+ cells contact the central canal in a medial position. These cells likely arise from a p2-like domain of ependymoradial glial progenitor cells, indicated by coexpression of Pax6 and Nkx6.1, but not DsRed driven by the olig2 promoter in these cells. We also present evidence that Pax2+ interneurons are newly generated after a spinal lesion, whereas the generation rate for a dorsal population of parvalbuminergic interneurons is comparatively low. Our results identify the regenerative potential of different interneuron types for the first time and support a model in which different progenitor cell domains in distinct dorsoventral positions around the central canal are activated by a lesion to give rise to diverse neuronal cell types in the adult zebrafish spinal cord.

Details

Original languageEnglish
Pages (from-to)3604-3616
Number of pages13
JournalJournal of Comparative Neurology
Volume520
Issue number16
Publication statusPublished - 1 Nov 2012
Peer-reviewedYes
Externally publishedYes

External IDs

PubMed 22473852

Keywords

ASJC Scopus subject areas

Keywords

  • Lesioned spinal cord, Neurons, Zebrafish

Library keywords