Learning deep belief networks from non-stationary streams

Research output: Contribution to book/Conference proceedings/Anthology/ReportConference contributionContributedpeer-review

Contributors

  • Roberto Calandra - , Technische Universität Darmstadt (Author)
  • Tapani Raiko - , Aalto University (Author)
  • Marc Peter Deisenroth - , Technische Universität Darmstadt (Author)
  • Federico Montesino Pouzols - , University of Helsinki (Author)

Abstract

Deep learning has proven to be beneficial for complex tasks such as classifying images. However, this approach has been mostly applied to static datasets. The analysis of non-stationary (e.g., concept drift) streams of data involves specific issues connected with the temporal and changing nature of the data. In this paper, we propose a proof-of-concept method, called Adaptive Deep Belief Networks, of how deep learning can be generalized to learn online from changing streams of data. We do so by exploiting the generative properties of the model to incrementally re-train the Deep Belief Network whenever new data are collected. This approach eliminates the need to store past observations and, therefore, requires only constant memory consumption. Hence, our approach can be valuable for life-long learning from non-stationary data streams.

Details

Original languageEnglish
Title of host publicationArtificial Neural Networks and Machine Learning, ICANN 2012 - 22nd International Conference on Artificial Neural Networks, Proceedings
Pages379-386
Number of pages8
EditionPART 2
Publication statusPublished - 2012
Peer-reviewedYes
Externally publishedYes

Publication series

SeriesLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
NumberPART 2
Volume7553 LNCS
ISSN0302-9743

Conference

Title22nd International Conference on Artificial Neural Networks, ICANN 2012
Duration11 - 14 September 2012
CityLausanne
CountrySwitzerland

External IDs

ORCID /0000-0001-9430-8433/work/158768042

Keywords

Keywords

  • Adaptive Deep Belief Networks, Adaptive Learning, Concept drift, Deep Belief Networks, Deep Learning, Generating samples, Generative model, Incremental Learning, Non-stationary Learning