LapGym: an Open Source Framework for Reinforcement Learning in Robot-Assisted Laparoscopic Surgery

Research output: Contribution to journalResearch articleContributedpeer-review

Contributors

  • Paul Maria Scheikl - , Friedrich-Alexander University Erlangen-Nürnberg, Karlsruhe Institute of Technology (Author)
  • Balázs Gyenes - , Karlsruhe Institute of Technology (Author)
  • Rayan Younis - , Heidelberg University  (Author)
  • Christoph Haas - , Karlsruhe Institute of Technology (Author)
  • Gerhard Neumann - , Karlsruhe Institute of Technology (Author)
  • Martin Wagner - , Clusters of Excellence CeTI: Centre for Tactile Internet, University Hospital Heidelberg (Joint last author)
  • Franziska Mathis-Ullrich - , Karlsruhe Institute of Technology, Friedrich-Alexander University Erlangen-Nürnberg (Joint last author)

Abstract

Recent advances in reinforcement learning (RL) have increased the promise of introducing cognitive assistance and automation to robot-assisted laparoscopic surgery (RALS). However, progress in algorithms and methods depends on the availability of standardized learning environments that represent skills relevant to RALS. We present LapGym, a framework for building RL environments for RALS that models the challenges posed by surgical tasks, and sofaenv, a diverse suite of 12 environments. Motivated by surgical training, these environments are organized into 4 tracks: Spatial Reasoning, Deformable Object Manipulation & Grasping, Dissection, and Thread Manipulation. Each environment is highly parametrizable for increasing difficulty, resulting in a high performance ceiling for new algorithms. We use Proximal Policy Optimization (PPO) to establish a baseline for model-free RL algorithms, investigating the effect of several environment parameters on task difficulty. Finally, we show that many environments and parameter configurations reflect well-known, open problems in RL research, allowing researchers to continue exploring these fundamental problems in a surgical context. We aim to provide a challenging, standard environment suite for further development of RL for RALS, ultimately helping to realize the full potential of cognitive surgical robotics. LapGym is publicly accessible through GitHub (https://github.com/ScheiklP/lap_gym).

Details

Original languageEnglish
Article number368
Pages (from-to)17665–17706
JournalJournal of Machine Learning Research
Volume24
Issue number1
Publication statusPublished - Dec 2023
Peer-reviewedYes

Keywords

Library keywords