KI-basierte Detektion von Meilerplätzen mithilfe der Kombination luftgestützter LiDAR-Datenprodukte und Neuronaler Netze
Research output: Types of thesis › Master thesis
Contributors
Abstract
Die historische Holzkohleproduktion spielte eine bedeutende Rolle in der industriellen Entwicklung. Traditionell wurde Holzkohle in sogenannten Meilern, aufrechtstehenden Öfen, hergestellt. Diese Praxis führte zur weitreichenden Abholzung und veränderte die Vegetationszusammensetzung. Um die historische Waldbedeckung und historischen Landnutzungspraktiken besser zu verstehen, ist es notwendig, die räumliche Verteilung der Meiler zu analysieren. Die manuelle Kartierung der Meilerüberreste mittels DGM-Visualisierungstechniken ist sehr zeit- und arbeitsintensiv. Diese Arbeit untersucht daher den Einsatz von Deep Learning zur automatischen Detektion von Meilerplätzen basierend auf LiDAR-Datenprodukten. Hierfür wurden vortrainierte Modelle der Toolbox MMDetection mit DGM-Bildern trainiert, um ein spezifisch auf Meiler abgestimmtes Modell zu entwickeln. Insgesamt wurden vier Experimente durchgeführt, die den Einfluss verschiedener DGM-Visualisierungen, die Größe der Bounding Boxen und Hyperparameter unter Verwendung des FoveaBox-Detektors sowie die Leistung unterschiedlicher Modelle (ATSS, VFNet, RetinaNet) analysierten. Die Ergebnisse zeigen, dass ein 3-Band Bild bestehend aus Hügelschattierung, Sky-View Faktor und Neigung sowie eine Bounding Box Größe von 50 m optimal für die Detektion von Meilern sind. Der FoveaBox-Detektor erzielte die beste Leistung mit dem RAdam-Optimierer und einer Lernrate von 0.0001, wobei das ATSS-Modell mit den gleichen Hyperparametern die schlüssigsten Ergebnisse mit einer Genauigkeit von 93 % erreichte und nur 7 % der Meiler übersah. Das ATSS-Modell zeigte im Gegensatz zu anderen Studien eine um bis zu 10 % bessere Leistung. Ausschlaggebende Faktoren für diese Verbesserungen waren der verwendete Datensatz aus den 3-Band Bildern, die Größe der Bounding Boxen und die umfangreichere Datenaugmentierung, insbesondere die ergänzende Nutzung radiometrischer Techniken. Durch die experimentelle Herangehensweise konnte die Erkennungsgenauigkeit um 13 % gesteigert werden. Im Vergleich zur manuellen Kartierung hat das Modell viele zusätzliche Meiler identifiziert, obwohl es gelegentlich zu Verwechslungen mit angehäufter Erde am Hang und Fehldetektionen in unebenem Gelände mit geringen Höhenunterschieden kam. Die Eignung des Algorithmus zur verbesserten Erkennung von Meilerplätzen anstelle der manuellen Kartierung wird als effizienter, aber nicht zwangsläufig als präziser eingeschätzt.
Details
| Original language | German |
|---|---|
| Qualification level | Master of Science |
| Awarding Institution | |
| Supervisors/Advisors |
|
| Defense Date (Date of certificate) | 6 Aug 2024 |
| Publisher |
|
| Publication status | Published - 20 Aug 2024 |
No renderer: customAssociatesEventsRenderPortal,dk.atira.pure.api.shared.model.researchoutput.Thesis
External IDs
| ORCID | /0009-0004-8891-4364/work/184887575 |
|---|