Irradiation system for pre-clinical studies with laser accelerated electrons

Research output: Contribution to journalResearch articleContributedpeer-review

Contributors

Abstract

In recent years, the new technology of laser based particle acceleration was developed at such a rate that medical application for cancer therapy could become feasible. Promising more compact and economic proton and ion accelerators the laser technology however results in specific properties, like ultra-short (~ps) and ultra-intensive particle beam pulses. The clinical applicability of such new beam qualities requires comprehensive translational research from basic investigations to cell and animal experiments, finally followed by clinical trials. For the first time, the new laser based irradiation technology was established for animal experiments by the German joint research project "onCOOPtics". A complete irradiation facility for laser accelerated electrons was developed, set up, commissioned, tested and applied for radiobiological tumour irradiation experiments under usage of a mouse model at the high intensity laser system JETI. The integration of a magnet and a collimator system resulted in an optimized beam transport and efficient electron energy filtration. Moreover, a specific irradiation and dosimetry setup was integrated allowing for the formation of irradiation fields, the real-time control of beam parameters and dose delivery to the tumour. For an accurate and reproducible positioning of the tumour in the irradiation field the mice were fixed in a movable box and the tumour position was online verified by means of a CCD camera system. The combination of both, the advanced laser accelerator system and the newly implemented irradiation and dosimetry setup allowed the successful performance of systematic radiobiological studies over months. Moreover, the practicability and easy handling of the system results in a reasonable duration of about 15 min for the whole procedure of mouse preparation, positioning and irradiation. In conclusion, the successful establishment of all technical requirements for and the performance of systematic animal studies with laser accelerated electrons mark an important step towards the clinical application of laser accelerated particle beams.

Details

Original languageEnglish
Pages (from-to)62-65
Number of pages4
JournalBiomedizinische Technik
Volume57
Issue numberSuppl 1 TRACK-A
Publication statusPublished - 18 Aug 2012
Peer-reviewedYes

External IDs

ORCID /0000-0003-4261-4214/work/170107857

Keywords

Sustainable Development Goals

ASJC Scopus subject areas