Intraoperative Optische Bildgebung in der Hirntumorchirurgie zur personalisierten Visualisierung der kortikalen funktionellen Hirnareale für Gefühl, Sehen, Motorik und Sprache sowie zur Gewebedifferenzierung von Tumorgewebe gegenüber funktionell intaktem Hirngewebe

Research output: Types of thesisDoctoral thesis

Contributors

Abstract

Etwa 7000 Menschen erkranken in Deutschland pro Jahr an einem bösartigen Hirntumor. Bei vielen dieser Patienten ist die mikrochirurgische Resektion des pathologischen Gewebes ein wesentlicher Baustein der Therapie. Doch trotz vielfältiger technischer Unterstützungssysteme ist die Hirntumorchirurgie eine der anspruchsvollsten chirurgischen Disziplinen. Dieser Umstand ist u. a. der Tatsache geschuldet, dass entstandene Schäden am Hirngewebe meist irreversibel sind und somit postoperativ zu funktionellen Beeinträchtigungen bei den Patienten führen können. Erschwerend kommt weiterhin hinzu, dass pathologisch verändertes und funktionell intaktes Hirngewebe vor allem bei niedergradigen Gliomen visuell kaum voneinander unterscheidbar sind. Für das postoperative Outcome der Patienten ist sowohl das Ausmaß der Resektion, als auch die Vermeidung von funktionellen Defiziten von essenzieller Bedeutung. Zahlreiche Studien belegen eine deutlich verlängerte Überlebenszeit bei vollständiger Entfernung des Tumorvolumens und gleichzeitiger Vermeidung von durch den Eingriff verursachten neuen funktionellen Defiziten. Primäres Ziel ist daher die möglichst vollständige Entfernung des Tumors bei Erhalt der Hirnfunktion. Zur Unterstützung während dieses Entscheidungsprozesses besteht der Bedarf für vor allem intraoperativ anwendbare Verfahren und Methoden, die mit geringem Aufwand einsetzbar sind und Informationen über Morphologie und/oder Funktion bereitstellen können. Die optische Bildgebung (IOI / Intraoperative Optical Imaging) stellt eine Möglichkeit dar während der Intervention spezifische Hirnfunktionen zu visualisieren. Ursprünglich primär zu Forschungszwecken im Tiermodell eingesetzt, konnte in der Vergangenheit das Potenzial der Methode bei dem Einsatz im klinischen Umfeld gezeigt werden. Ausgehend von diesen Ergebnissen sollten in dieser Arbeit nun zum einen die Methode zur Darstellung der funktionellen Hirnareale weiter optimiert, die Integration in das klinische Umfeld vorangetrieben sowie das Potenzial der Bildgebung in weiteren Anwendungsfeldern evaluiert werden. Zentrale Fragestellungen die untersucht wurden, waren die Evaluation des Nutzens der IOI bei Wachkraniotomien zur Identifikation von Motor- und Spracharealen sowie zum anderen die Optimierung der bisherigen Auswerte- und Visualisierungsmethodik in Hinblick auf eine Maximierung des Informationsgewinns durch die genauere Charakterisierung der hämodynamischen Antwortfunktion. Weiterhin wurde untersucht inwieweit die in klinischer Routine vorhandene Mikroskopkameratechnik zur Anwendung der IOI geeignet ist. Neben diesen Fragestellungen ist auch die Abgrenzung von Tumorgewebe Gegenstand dieser Arbeit. Ausgehend von der Tatsache, dass sich pathologische Veränderungen u. a. auch in einer gestörten neurovaskulären Kopplung manifestieren, wurde untersucht, ob die direkte elektrische Stimulation (DCS) der Hirnoberfläche in Kombination mit der IOI geeignet ist, diese zu testen und somit funktionell intaktes und pathologisch verändertes Gewebe während der Operation zu differenzieren. Die Bewertung der IOI bei Wachoperationen erfolgte an einem Kollektiv aus insgesamt 10 Patienten. Hierbei wurden die mittels IOI aktivierten Areale qualitativ mit den präoperativ aufgezeichneten fMRT-Daten, sowie den intraoperativen Ergebnissen der Sprachtestung durch die direkte elektrische Stimulation verglichen. Zur funktionellen Aktivierung der Sprachareale wurden von den Patienten während der Aufnahmen Objektbenennungsaufgaben durchgeführt. Weiterhin fanden Untersuchungen zum Einsatz der IOI zur Generierung von visuellem Feedback während der Sprachkartierung statt. Zur Beantwortung der Eignung der RGB-Kamera für die IOI, wurden Messungen an insgesamt acht Patienten durchgeführt, bei denen der primär sensorische Kortex durch Stimulation des N. medianus aktiviert wurde. Die Aufnahmen der RGB-Kamera erfolgten hierbei parallel zu dem bisher genutzten Standardsystem, welches durch Lichtwellenlängenfilterung bei einem isosbestischen Punkt der Hämoglobinabsorption (568 nm) sensitiv für Änderungen des zerebralen Blutvolumens ist. Die aus den einzelnen Farbkanälen berechneten Aktivitätskarten der RGB-Kamera wurden mit der Aktivitätskarte des Standardsystems verglichen, um eine Aussage über die dominierende physiologische Signalkomponente in den einzelnen Farbkanälen zu treffen. Die bisherigen Auswertealgorithmen für die Darstellung funktioneller Areale basieren auf einem Ansatz, welcher die Fouriertransformation nutzt, um die Amplitude der Stimulationsfrequenz in den Bilddaten zu identifizieren. Dieser Ansatz wurde derart optimiert, dass zusätzlich zur Amplitudeninformation nun auch die Phaseninformation des Signals berücksichtigt wird. Somit können die hämodynamischen Vorgänge bei Aktivierung der entsprechenden Hirnareale genauer charakterisiert werden. Diese neue Auswertung und Visualisierung wurde zur Untersuchung der Aufnahmen von insgesamt 22 Patienten genutzt. Hierbei wurden die Aktivierungen nach elektrischer, taktiler und visueller Stimulation sowie die Aktivierung nach Durchführung von Sprachaufgaben bei Wachkraniotomien untersucht. Die Ergebnisse wurden u. a. mittels Phasenwinkelverteilungen in Form von Polarhistogrammen quantifiziert. In Hinblick auf die Differenzierung zwischen Tumor- und Normalgewebe wurden die Änderungen des zerebralen Blutvolumens, nachfolgend auf insgesamt 19 elektrische Stimulationen der Hirnoberfläche bei drei Patienten, mittels IOI beobachtet und die in den aktivierten Arealen gemessenen Reflektanzänderungen anschließend hinsichtlich Amplitude und Dauer quantifiziert. Das Ausmaß der aktivierten Areale wurde dazu mittels Differenzbildberechnung aus der gemittelten Reflektanz der Hirnoberfläche vor Stimulationsbeginn und der Reflektanz direkt nach Stimulationsende bestimmt. Bei dem Einsatz der IOI während Wachoperationen war die Identifizierung von primär motorischen Arealen in guter Übereinstimmung zu den präoperativen fMRT-Daten möglich. Die Auswertung der Daten zur Lokalisierung der Sprachareale ergab, dass bei 5 von 8 Patienten grundsätzlich zwar eine Übereinstimmung zum fMRT sichtbar war, gerade aber in Bezug zu den Ergebnissen der intraoperativen Sprachkartierung mit DCS die Ergebnisse beider Modalitäten (fMRT und IOI) nicht spezifisch genug für eine intraoperative Entscheidungsfindung sind. Die Verwendung einer RGB-Kamera für die Bildgebung ist prinzipiell möglich und kann die Integration der Methode in die operativen Abläufe vereinfachen. Bei allen 8 Patienten ließen sich aus den Daten der Farbkamera Aktivitätskarten berechnen, die eine Abgrenzung des Handareals auf dem primär sensorischen Kortex erlaubten. Bezüglich der Lokalisation der Aktivierung zeigten Blau- als auch Grünkanal die höchste Übereinstimmung mit den Daten des Standardsystems bei 568 nm. Eindeutige Unterschiede in den durch verschiedene Stimulationen ausgelösten hämodynamischen Reaktionen konnten mittels der in dieser Arbeit eingesetzten Phasenauswertung beobachtet werden. Speziell die auf die elektrische Stimulation am N. medianus folgende hämodynamische Antwort grenzt sich bezüglich ihrer temporalen Charakteristik gegenüber den Antworten nach taktiler und visueller Stimulation ab. Während der Stimulationsphasen kam es hierbei zu einer Reduktion des zerebralen Blutvolumens. Sowohl bei der taktilen, als auch bei der visuellen Stimulation zeigte sich eine Zunahme des Blutvolumens während der Stimulation. Die Auswertung der aktiven Sprachproduktion ergab sowohl Areale mit zunehmendem, als auch Areale mit abnehmendem Blutvolumen. Im Rahmen der Untersuchungen zur Gewebeabgrenzung mittels IOI und DCS konnten signifikante Unterschiede zwischen Tumor und morphologisch unverändertem, also mutmaßlich funktionell intaktem Hirngewebe beobachtet werden. Nach der elektrischen Stimulation zeigten sich auf Tumorgewebe in ihrer Amplitude deutlich geminderte optische Änderungen wohingegen auf mutmaßlich funktionell intaktem Hirngewebe eine deutliche hämodynamische Reaktion auf den Stimulus zu beobachten war. Die Ergebnisse verdeutlichen, dass die IOI als universelles Werkzeug bei einer Vielzahl von Anwendungsgebieten in der Neurochirurgie eingesetzt werden kann. Der methodeninhärente Vorteil liegt in der einfachen Anwendbarkeit und unkomplizierten Integration in die operativen Abläufe. Basierend auf den Ergebnissen der Arbeit scheint neben der Identifikation funktioneller Areale vor allem die Kombination von IOI und DCS vielversprechend. Hier kann die IOI zum einen zur Generierung von visuellem Feedback im Rahmen der intraoperativen Sprachkartierung genutzt werden und zum anderen bei Eingriffen unter Vollnarkose zur Gewebedifferenzierung. Die in der Arbeit weiterentwickelte funktionelle Auswertung erlaubt die genauere Charakterisierung der hämodynamischen Antwortfunktion auf verschiedene Stimuli und somit die Nutzung der Methode zum Erlangen vom grundlegendem Wissen über die Funktionsweise von kortikalen Prozessen.

Details

Original languageGerman
Qualification levelDr. rer. medic.
Awarding Institution
  • Medical Faculty Carl Gustav Carus
Supervisors/Advisors
  • Sobottka, Stephan, Reviewer
  • Morgenstern, Ute, Reviewer
Defense Date (Date of certificate)8 Feb 2023
Publication statusPublished - 2023
No renderer: customAssociatesEventsRenderPortal,dk.atira.pure.api.shared.model.researchoutput.Thesis

External IDs

ORCID /0000-0002-3776-3453/work/148145962

Keywords