INTERCEPT H3: a multicenter phase I peptide vaccine trial for the treatment of H3-mutated diffuse midline gliomas

Research output: Contribution to journalResearch articleContributedpeer-review

Contributors

  • Niklas Grassl - , German Cancer Research Center (DKFZ), Heidelberg University  (Author)
  • Katharina Sahm - , German Cancer Research Center (DKFZ), Heidelberg University  (Author)
  • Heike Süße - , German Cancer Research Center (DKFZ) (Author)
  • Isabel Poschke - , German Cancer Research Center (DKFZ) (Author)
  • Lukas Bunse - , German Cancer Research Center (DKFZ), Heidelberg University  (Author)
  • Theresa Bunse - , German Cancer Research Center (DKFZ), Heidelberg University  (Author)
  • Tamara Boschert - , German Cancer Research Center (DKFZ), Heidelberg University , Helmholtz Institute for Translational Oncology (HI-TRON) (Author)
  • Iris Mildenberger - , German Cancer Research Center (DKFZ), Heidelberg University  (Author)
  • Anne Kathleen Rupp - , German Cancer Research Center (DKFZ) (Author)
  • Max Philipp Ewinger - , German Cancer Research Center (DKFZ) (Author)
  • Lisa Marie Lanz - , German Cancer Research Center (DKFZ) (Author)
  • Monika Denk - , University of Tübingen, German Cancer Research Center (DKFZ) (Author)
  • Ghazaleh Tabatabai - , University of Tübingen (Author)
  • Michael W. Ronellenfitsch - , University Hospital Frankfurt (Author)
  • Ulrich Herrlinger - , University of Bonn (Author)
  • Martin Glas - , University of Duisburg-Essen (Author)
  • Dietmar Krex - , Department of Neurosurgery (Author)
  • Peter Vajkoczy - , Charité – Universitätsmedizin Berlin (Author)
  • Antje Wick - , Heidelberg University  (Author)
  • Inga Harting - , Heidelberg University  (Author)
  • Felix Sahm - , Heidelberg University , German Cancer Research Center (DKFZ) (Author)
  • Andreas von Deimling - , Heidelberg University , German Cancer Research Center (DKFZ) (Author)
  • Martin Bendszus - , Heidelberg University  (Author)
  • Wolfgang Wick - , Heidelberg University  (Author)
  • Michael Platten - , German Cancer Research Center (DKFZ), Heidelberg University  (Author)

Abstract

Introduction: Diffuse midline gliomas (DMG) are universally lethal central nervous system tumors that carry almost unanimously the clonal driver mutation histone-3 K27M (H3K27M). The single amino acid substitution of lysine to methionine harbors a neoantigen that is presented in tumor tissue. The long peptide vaccine H3K27M-vac targeting this major histocompatibility complex class II (MHC class II)-restricted neoantigen induces mutation-specific immune responses that suppress the growth of H3K27M+ flank tumors in an MHC-humanized rodent model. Methods: INTERCEPT H3 is a non-controlled open label, single arm, multicenter national phase 1 trial to assess safety, tolerability and immunogenicity of H3K27M-vac in combination with standard radiotherapy and the immune checkpoint inhibitor atezolizumab (ATE). 15 adult patients with newly diagnosed K27M-mutant histone-3.1 (H3.1K27M) or histone-3.3 (H3.3K27M) DMG will be enrolled in this trial. The 27mer peptide vaccine H3K27M-vac will be administered concomitantly to standard radiotherapy (RT) followed by combinatorial treatment with the programmed death‐ligand 1 (PD-L1) targeting antibody ATE. The first three vaccines will be administered bi-weekly (q2w) followed by a dose at the beginning of recovery after RT and six-weekly administrations of doses 5 to 11 thereafter. In a safety lead-in, the first three patients (pts. 1–3) will be enrolled sequentially. Perspective: H3K27M-vac is a neoepitope targeting long peptide vaccine derived from the clonal driver mutation H3K27M in DMG. The INTERCEPT H3 trial aims at demonstrating (1) safety and (2) immunogenicity of repeated fixed dose vaccinations of H3K27M-vac administered with RT and ATE in adult patients with newly diagnosed H3K27M-mutant DMG. Trial registration: NCT04808245.

Details

Original languageEnglish
Article number55
JournalNeurological research and practice
Volume5
Issue number1
Publication statusPublished - Dec 2023
Peer-reviewedYes

Keywords

Sustainable Development Goals

ASJC Scopus subject areas

Keywords

  • Antigen, Atezolizumab, Central nervous system tumor, Diffuse midline glioma, Glioma, Immunotherapy, T cell, Vaccine