Influence of mapping function parameters on global GPS network analyses: Comparisons between NMF and IMF.

Research output: Contribution to journalResearch articleContributedpeer-review

Contributors

Abstract

One major part in the error budget of GPS measurements is the imperfect modeling of the tropospheric delay. By processing a global network of 195 stations we have compared two different mapping techniques: (1) the commonly used Niell hydrostatic mapping function (NMF) and (2) the isobaric hydrostatic mapping function (IMF) based on numerical weather fields. The two solutions reveal significant differences in the derived zenith total delay (ZTD) parameters and site positions. The largest differences occur in Antarctica, where the annual mean heights differ by up to 15 mm. We infer that the significant differences are related to model deficiencies in NMF since a) IMF improves the repeatability in station heights in high southern latitudes significantly, and b) using IMF reduces the dependence of the solution on the elevation cut-off angle by about 20%. In conclusion, the use of mapping function (MF) parameters based on meteorological data is strongly recommended for global GPS analyses.

Details

Original languageEnglish
Article numberL01814
JournalGeophysical Research Letters
Volume33
Issue number1
Publication statusPublished - 11 Jan 2006
Peer-reviewedYes

External IDs

Scopus 33644631991

Keywords

DFG Classification of Subject Areas according to Review Boards

Subject groups, research areas, subject areas according to Destatis