In-depth profiling of the LiaR response of Bacillus subtilis

Research output: Contribution to journalResearch articleContributedpeer-review

Contributors

  • Diana Wolf - , Department of Medical Biology, Ludwig Maximilian University of Munich (Author)
  • Falk Kalamorz - (Author)
  • Tina Wecke - (Author)
  • Anna Juszczak - (Author)
  • Ulrike Mäder - (Author)
  • Georg Homuth - (Author)
  • Sina Jordan - (Author)
  • Janine Kirstein - (Author)
  • Michael Hoppert - (Author)
  • Birgit Voigt - (Author)
  • Michael Hecker - (Author)
  • Thorsten Mascher - , Chair of General Microbiology (Author)

Abstract

The Lia system, a cell envelope stress response module of Bacillus subtilis, is comprised of the LiaRS two-component system and a membrane-anchored inhibitor protein, LiaF. It is highly conserved in the Firmicutes bacteria, and all orthologs investigated so far are activated by cell wall antibiotics. In response to envelope stress, the systems in Firmicutes cocci induce the expression of a number of genes that are involved in conferring resistance against its inducers. In contrast, a complete picture of the LiaR regulon of B. subtilis is still missing and no phenotypes could be associated with mutants lacking LiaRS. Here, we performed genome-wide transcriptomic, proteomic, and in-depth phenotypic profiling of constitutive "Lia ON" and "Lia OFF" mutants to obtain a comprehensive picture of the Lia response of Bacillus subtilis. In addition to the known targets liaIH and yhcYZ-yhdA, we identified ydhE as a novel gene affected by LiaR-dependent regulation. The results of detailed follow-up gene expression studies, together with proteomic analysis, demonstrate that the liaIH operon represents the only relevant LiaR target locus in vivo. It encodes a small membrane protein (LiaI) and a phage shock protein homolog (LiaH). LiaH forms large oligomeric rings reminiscent of those described for Escherichia coli PspA or Arabidopsis thaliana Vipp1. The results of comprehensive phenotype studies demonstrated that the gene products of the liaIH operon are involved in protecting the cell against oxidative stress and some cell wall antibiotics. Our data suggest that the LiaFSR system of B. subtilis and, presumably, other Firmicutes bacilli coordinates a phage shock protein-like response.

Details

Original languageEnglish
Pages (from-to)4680-4693
Number of pages14
JournalJournal of bacteriology
Volume192
Issue number18
Publication statusPublished - Sept 2010
Peer-reviewedYes

External IDs

PubMedCentral PMC2937411
Scopus 77956552973

Keywords

Keywords

  • Bacillus subtilis/genetics, Bacterial Proteins/genetics, Blotting, Northern, Chromatography, Gel, Electrophoresis, Gel, Two-Dimensional, Gene Expression Regulation, Bacterial/genetics, Membrane Lipids/genetics, Microscopy, Electron, Transmission, Mutagenesis, Insertional, Oligonucleotide Array Sequence Analysis, Polymerase Chain Reaction, Promoter Regions, Genetic/genetics, Sequence Deletion

Library keywords