Independent determination of the Earth's orbital parameters with solar neutrinos in Borexino
Research output: Contribution to journal › Research article › Contributed › peer-review
Contributors
- Technical University of Munich
- Princeton University
- Lomonosov Moscow State University
- Institute for Celestial Mechanics and Computation of Ephemerides
- Gran Sasso Science Institute
- RWTH Aachen University
- Johannes Gutenberg University Mainz
- Jagiellonian University in Kraków
- National Academy of Sciences of Ukraine
- Royal Holloway University of London
- Hungarian Academy of Sciences
- Moscow Engineering Physics Institute
Abstract
Since the beginning of 2012, the Borexino collaboration has been reporting precision measurements of the solar neutrino fluxes, emitted in the proton–proton chain and in the Carbon–Nitrogen–Oxygen cycle. The experimental sensitivity achieved in Phase-II and Phase-III of the Borexino data taking made it possible to detect the annual modulation of the solar neutrino interaction rate due to the eccentricity of Earth's orbit, with a statistical significance greater than 5σ. This is the first precise measurement of the Earth's orbital parameters based solely on solar neutrinos and an additional signature of the solar origin of the Borexino signal. The complete periodogram of the time series of the Borexino solar neutrino detection rate is also reported, exploring frequencies between one cycle/year and one cycle/day. No other significant modulation frequencies are found. The present results were uniquely made possible by Borexino's decade-long high-precision solar neutrino detection.
Details
Original language | English |
---|---|
Article number | 102778 |
Pages (from-to) | 1-9 |
Number of pages | 9 |
Journal | Astroparticle physics |
Volume | 145 |
Publication status | Published - Mar 2023 |
Peer-reviewed | Yes |
Keywords
ASJC Scopus subject areas
Keywords
- Annual modulation, Earth's orbit parameters, Neutrino day–night effect, Solar neutrinos, Solar standard model