Importance of Weather Conditions in a Flight Corridor

Research output: Contribution to journalResearch articleContributedpeer-review


Current research initiatives, such as the Single European Sky Air Traffic Management Research Program, call for an air traffic system with improved safety and efficiency records and environmental compatibility. The resulting multi-criteria system optimization and individual flight trajectories require, in particular, reliable three-dimensional meteorological information. The Global (Weather) Forecast System only provides data at a resolution of around 100 km. We postulate a reliable interpolation at high resolution to compute these trajectories accurately and in due time to comply with operational requirements. We investigate different interpolation methods for aerodynamic crucial weather variables such as temperature, wind speed, and wind direction. These methods, including Ordinary Kriging, the radial basis function method, neural networks, and decision trees, are compared concerning cross-validation interpolation errors. We show that using the interpolated data in a flight performance model emphasizes the effect of weather data accuracy on trajectory optimization. Considering a trajectory from Prague to Tunis, a Monte Carlo simulation is applied to examine the effect of errors on input (GFS data) and output (i.e., Ordinary Kriging) on the optimized trajectory.


Original languageEnglish
Pages (from-to)312-338
Number of pages27
Volume5 (2022)
Issue number1
Publication statusPublished - 9 Mar 2022

External IDs

ORCID /0000-0002-8909-4861/work/149081757


ASJC Scopus subject areas


  • gradient boosting machines, Kriging, Monte Carlo simulation, neural network, spatial interpolation