Immobilienbewertung in Märkten mit wenigen Transaktionen – Möglichkeiten statistischer Auswertungen

Research output: Types of ThesisDoctoral thesis

Contributors

Abstract

Markttransparenz in Deutschland wird durch die Gutachterausschüsse und auch durch verschiedene private Akteure am Immobilienmarkt realisiert. Insbesondere in Teilmärkten mit geringen Transaktionszahlen stellt die Markttransparenz eine Herausforderung dar, da nicht ausreichend Daten zur Analyse der jeweiligen Märkte zur Verfügung stehen. Aus diesem Grund bedürfen diese Märkte einer tiefergehenden Untersuchung, um auch hier eine ausreichende Markttransparenz zu erreichen. Die Vielfältigkeit der Teilmärkte mit geringen Transaktionszahlen muss dafür differenziert betrachtet werden. Im Rahmen der Arbeit werden zunächst Unterschiede in den Eigenschaften der Märkte mit geringen Transaktionszahlen untersucht. Hierzu wird mittels einer qualitativen Untersuchung von Leitfadeninterviews sowie der Literatur zum Thema eine Theorie zur Systematisierung der Märkte gebildet. Differenziert für einzelne Märkte kann mit dieser Strukturierung eine passende Auswertestrategie entwickelt werden. Anschließend erfolgt die Untersuchung von verschiedenen Daten, die bereits in den Märkten mit geringer Transaktionszahl genutzt werden. Kauffälle, die unvollständig erfasst sind, werden derzeit bei Auswertungen vollständig ausgeschlossen (Fallweiser Ausschluss). Teilweise fehlt jedoch nur eine Information für eine multivariate Analyse. Im Rahmen der Arbeit wird untersucht, ob und mit welchen Methoden diese Datenlücken geeignet gefüllt werden können, um eine höhere Genauigkeit in den Analysen auch mit wenigen Daten zu erhalten. Als Methoden werden neben dem Fallweisen Ausschluss eine Mittelwertimputation sowie die Auffüllung der Datenlücken mittels Expectation-Maximization und Random-Forest-Regression untersucht. Darüber hinaus wird das Expertenwissen, das in verschiedenen Formen von Expertisen (Befragungen, Angebotspreise, Gutachten) geäußert werden kann, untersucht. Zur Erlangung eines Überblicks, wird zunächst das Expertenwissen im Rahmen einer quantitativen Befragung näher betrachtet, um Handlungsweisen und Unterschiede von Experten aus verschiedenen Gruppen aufzudecken. Anschließend werden intersubjektive Experten- und Laienbefragungen im Kontext der Immobilienbewertung ausgewertet sowie Angebotspreise, die von Maklern und ohne Makler vermarktet werden, im Verhältnis zu den realisierten Kaufpreisen untersucht. Da die untersuchten zusätzlichen Daten wie Angebotsdaten oder Expertenbefragungen in einigen Teilmärkten nicht zur Verfügung stehen oder nur mit hohem Aufwand erzeugt werden können, sind alternative Nutzungsansätze notwendig. Hierzu werden zwei Methoden auf ihre Eignung hinsichtlich räumlich zusammengefasster Auswertungen geprüft. Der Vergleich erfolgt zur in der Praxis etablierten multiplen linearen Regressionsanalyse. Zum einen werden die geographisch gewichtete Regressionsanalyse, die lokale Märkte besser abbilden kann, zum anderen die künstlichen neuronalen Netze, die Nichtlinearitäten besser abbilden können, angewendet. Im Ergebnis zeigt sich, dass eine Strukturierung der Märkte mit geringer Transaktionszahl möglich ist. Eine sinnvolle Strukturierung erfolgt anhand der Grundgesamtheit des jeweiligen sachlichen/-räumlichen Marktes. Ebenso kann eine Differenzierung nach ländlichen und urbanen Räumen erfolgen. Mit Imputationsmethoden können die Ergebnisse von Regressionsanalysen deutlich verbessert werden. Selbst bei einem großen Vorkommen von Datenlücken in unterschiedlichen Parametern kann eine Auswertung noch gute Ergebnisse in der Größenordnung der vollständigen Kauffälle liefern. Auch mit der simplen Methode der Mittelwertimputation kann ein gutes Ergebnis erzielt werden. Experten im Bereich der Immobilienbewertung haben die unterschiedlichsten beruflichen Herkünfte. In ihrer Arbeitsweise lassen sich jedoch keine wesentlichen Systematiken feststellen. Lediglich bei der Nutzung von Daten können Systematiken aufgedeckt werden. Expertenbefragungen weisen grundsätzlich hohe Streuungsmaße auf. Die Streuungsmaße werden dann reduziert, wenn bei den Befragungen Einschränkungen beispielsweise durch eine vorgegebene Skala oder durch vorgeschlagene Werte erfolgen. Weitere Untersuchungen sind dahingehend notwendig. Auch die Abschläge zwischen Angebotspreisen und Kaufpreisen, aber auch die Anpassung von Angebotspreisen im Vermarktungszeitraum, weisen hohe Streuungsbreiten auf. Einen signifikanten Unterschied zwischen der Vermarktung mit oder ohne Makler kann in der untersuchten Stichprobe nicht nachgewiesen werden. Sowohl die Nutzung der geographisch gewichteten Regressionsanalyse (GWR) als auch die Nutzung von künstlichen neuronalen Netzen (KNN) bieten bei der Auswertung von räumlich zusammengefassten Daten in einer Kreuzvalidierung einen Vorteil. Dies lässt darauf schließen, dass die Märkte sowohl räumlich inhomogen als auch nichtlinear sind. Zielführend erscheint eine Kombination der geographischen Komponente mit nichtparametrischen Ansätzen wie dem Lernverfahren der KNN.

Details

Original languageGerman
Awarding Institution
Supervisors/Advisors
  • Weitkamp, Alexandra, Main supervisor
  • Neuner, Hans-Berndt, Supervisor, External person
  • Linke, Hans Joachim, Supervisor, External person
Publication statusPublished - 2021
No renderer: customAssociatesEventsRenderPortal,dk.atira.pure.api.shared.model.researchoutput.Thesis

Keywords

Keywords

  • Immobilienbewertung, Wertermittlung, Statistik, Immobilienmärkte, Expertenwissen