Hierarchical carbide-derived carbon foams with advanced mesostructure as a versatile electrochemical energy-storage material
Research output: Contribution to journal › Research article › Contributed › peer-review
Contributors
Abstract
Highly porous carbide-derived carbon (CDC) mesofoams (DUT-70) are prepared by nanocasting of mesocellular silica foams with a polycarbosilane precursor. Ceramic conversion followed by silica removal and high-temperature chlorine treatment yields CDCs with a hierarchical micro-mesopore arrangement. This new type of polymer-based CDC is characterized by specific surface areas as high as 2700 m2 g-1, coupled with ultrahigh micro- and mesopore volumes up to 2.6 cm3 g-1. The relationship between synthesis conditions and the properties of the resulting carbon materials is described in detail, allowing precise control of the properties of DUT-70. Since the hierarchical pore system ensures both efficient mass transfer and high capacities, the novel CDC shows outstanding performance as an electrode material in electrochemical double-layer capacitors (EDLCs) with specific capacities above 240 F g-1 when measured in a symmetrical two-electrode configuration. Remarkable capacities of 175 F g-1 can be retained even at high current densities of 20 A g-1 as a result of the enhanced ion-transport pathways provided by the cellular mesostructure. Moreover, DUT-70 can be infiltrated with sulfur and host the active material in lithium-sulfur battery cathodes. Reversible capacities of 790 mAh g-1 are achieved at a current rate of C/10 after 100 cycles, which renders DUT-70 an ideal support material for electrochemical energy-storage applications. Hierarchical carbide-derived carbon (CDC) mesofoams (DUT-70) with extremely high specific surface areas and nanopore volumes are presented. DUT-70 shows outstanding specific capacities as electrode materials in electrochemical double-layer capacitors and as sulfur host in lithium-sulfur battery cathodes. This CDC is an advanced material for electrochemical energy storage, combining high capacities with efficient mass-transfer behavior.
Details
| Original language | English |
|---|---|
| Article number | 1300645 |
| Journal | Advanced energy materials |
| Volume | 4 |
| Issue number | 2 |
| Publication status | Published - Jan 2014 |
| Peer-reviewed | Yes |
Keywords
Sustainable Development Goals
ASJC Scopus subject areas
Keywords
- carbide-derived carbons, electrochemical double-layer capacitors, lithium-sulfur batteries, mesocellular siliceous foams, nanocasting