Heterologous Production and Yield Improvement of Epothilones in Burkholderiales Strain DSM 7029
Research output: Contribution to journal › Research article › Contributed › peer-review
Contributors
Abstract
The cloning of microbial natural product biosynthetic gene clusters and their heterologous expression in a suitable host have proven to be a feasible approach to improve the yield of valuable natural products and to begin mining cryptic natural products in microorganisms. Myxobacteria are a prolific source of novel bioactive natural products with only limited choices of heterologous hosts that have been exploited. Here, we describe the use of Burkholderiales strain DSM 7029 as a potential heterologous host for the functional expression of myxobacterial secondary metabolites. Using a newly established electroporation procedure, the 56 kb epothilone biosynthetic gene cluster from the myxobacterium Sorangium cellulosum was introduced into the chromosome of strain DSM 7029 by transposition. Production of epothilones A, B, C, and D was detected despite their yields being low. Optimization of the medium, introduction of the exogenous methylmalonyl-CoA biosynthetic pathway, and overexpression of rare tRNA genes resulted in an approximately 75-fold increase in the total yields of epothilones to 307 μg L -1. These results show that strain DSM 7029 has the potential to produce epothilones with reasonable titers and might be a broadly applicable host for the heterologous expression of other myxobacterial polyketide synthases and nonribosomal peptide synthetases, expediting the process of genome mining.
Details
Original language | English |
---|---|
Pages (from-to) | 1805-1812 |
Number of pages | 8 |
Journal | ACS chemical biology |
Volume | 12 |
Issue number | 7 |
Publication status | Published - 21 Jul 2017 |
Peer-reviewed | Yes |
External IDs
Scopus | 85025154827 |
---|---|
ORCID | /0000-0002-4754-1707/work/142248086 |
Keywords
Keywords
- Biological Products/metabolism, Chromatography, High Pressure Liquid, Electroporation, Epothilones/biosynthesis, Industrial Microbiology/methods, Molecular Structure, Myxococcales/genetics, RNA, Transfer/genetics, Up-Regulation