Growth of silica nanoparticles in methylmethacrylate-based water-in-oil microemulsions

Research output: Contribution to journalResearch articleContributedpeer-review

Contributors

Abstract

The mechanism of silica particle formation in monomer microemulsions is studied using dynamic light scattering (DLS), atomic force microscopy, small-angle X-ray scattering (SAXS), and conductivity measurements. The hydrolysis of tetraethylorthosilicate (TEOS) in methylmethacrylate (MMA) microemulsions (MMA = methylmethacrylate) is compared with the formation of SiO2 particles in heptane microemulsions. Stable microemulsions without cosurfactant were found for MMA, the nonionic surfactant Marlophen NP10, and aqueous ammonia (0.75 wt%). In the one-phase region of the ternary phase diagram, the water/surfactant ratio (Rw) could be varied from 6 to 18. The DLS and SAXS measurements show that reverse micelles form in these water-in-oil (w/o) microemulsions. The minimum water-to-surfactant molar ratio required for micelle formation was determined. Particle formation is achieved from the base-catalyzed hydrolysis of TEOS. According to atomic force microscopy measurements of particles isolated from the emulsion, the particle size can be effectively tailored in between 20 and 60 nm by varying Rw from 2-6 in heptane w/o microemulsions. For MMA-based microemulsions, the particle diameter ranges from 25 to 50 nm, but the polydispersity is higher. Tailoring of the particle size is not achieved with Rw, but adjusting the particle growth period produces particles between 10 and 70 nm.

Details

Original languageEnglish
Pages (from-to)1645-1653
Number of pages9
JournalColloid and polymer science
Volume285
Issue number15
Publication statusPublished - Dec 2007
Peer-reviewedYes

Keywords

Keywords

  • Acrylates, Atomic force microscopy, Dynamic light scattering, Reverse microemulsions, Silica nanoparticles

Library keywords