Fusion based learning approach for predicting concrete pouring productivity based on construction and supply parameters
Research output: Contribution to journal › Research article › Contributed › peer-review
Contributors
Abstract
Purpose - The purpose of this paper is to predict the concrete pouring production rate by considering both construction and supply parameters, and by using a more stable learning method. Design/methodology/approach - Unlike similar approaches, this paper considers not only construction site parameters, but also supply chain parameters. Machine learner fusion-regression (MLF-R) is used to predict the production rate of concrete pouring tasks. Findings - MLF-R is used on a field database including 2,600 deliveries to 507 different locations. The proposed data set and the results are compared with ANN-Gaussian, ANN-Sigmoid and Adaboost.R2 (ANN-Gaussian). The results show better performance of MLF-R obtaining the least root mean square error (RMSE) compared with other methods. Moreover, the RMSEs derived from the predictions by MLF-R in some trials had the least standard deviation, indicating the stability of this approach among similar used approaches. Practical implications - The size of the database used in this study is much larger than the size of databases used in previous studies. It helps authors draw their conclusions more confidently and introduce more generalised models that can be used in the ready-mixed concrete industry. Originality/value - Introducing a more stable learning method for predicting the concrete pouring production rate helps not only construction parameters, but also traffic and supply chain parameters.
Details
Original language | English |
---|---|
Pages (from-to) | 185-202 |
Number of pages | 18 |
Journal | Construction innovation : information, process, management |
Volume | 16 |
Issue number | 2 |
Publication status | Published - 4 Apr 2016 |
Peer-reviewed | Yes |
Externally published | Yes |
External IDs
ORCID | /0000-0002-2939-2090/work/141543881 |
---|
Keywords
ASJC Scopus subject areas
Keywords
- Artificial intelligence, Computer systems, Construction engineering management, Construction estimating, Construction management, Construction scheduling